CAMBRIDGE JOURNAL OF MATHEMATICS
Volume 1, Number 1, 1-51, 2013

On the crystalline period map
A. BEILINSON*

To Irene

1991 MATHEMATICS SUBJECT CLASSIFICATION: Primary 14F30, 14F40;
secondary 14F20.

KEYWORDS AND PHRASES: p-adic periods, log crystalline cohomology,
h-topology, alterations.

This article is a direct continuation of [B]. It contains a simple proof of
comparison theorems in p-adic Hodge theory (the Fontaine-Jannsen con-
jecture). Different proofs were found earlier by Faltings, Niziol, and Tsuji,
the case of open varieties treated by Yamashita. An alternative approach,
based on an identification of the log crystalline cohomology for Ici maps with
the noncompleted (for the Hodge filtration) derived de Rham complex, was
developed by Bhatt [Bh2].

Let Varg be the category of algebraic varieties over an algebraic clo-
sure K of a p-adic field K. Our principal character is a natural h-sheaf
of dg algebras Acrys on Varg equipped with a Frobenius action; let X
RIerys(X) := RI'(Xh, Acrys), X € Varg, be the corresponding cohomology
theory. We construct Acys applying h-localization procedure, as in [B] 2.6,
to the absolute (i.e., relative to Z,) log crystalline cohomology of log O -
schemes coming from semi-stable pairs. The algebra Acys(Spec K) equals
the Fontaine ring Acrys. The crystalline p-adic Poincaré lemma asserts that
Acrys ®% Z/p™ is a constant h-sheaf with fiber Acrys/p™. It yields a morphism
of dg algebras perys 1 Rlerys(X) = RIg (X, Zp) @7, Acrys. This crystalline pe-
riod map becomes an isomorphism after Berys-localization, which implies the
Fontaine-Jannsen conjecture.

The article runs as follows: §1, that takes most of the pages, is an ex-
position of log crystalline cohomology and Hyodo-Kato theory. In §2 we
define Ac.ys and prove the crystalline p-adic Poincaré lemma. Like its Hodge-
completed counterpart of [B] 3.3, the Poincaré lemma comes from Bhatt’s
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theorem [B] 4.3, [Bh1] 1.1, but to deduce it we use the conjugate spectral se-
quence instead of the Hodge-de Rham one. We also define the Hyodo-Kato
cohomology! RIyk(X) and identify Rl.ys(X) ® Q with its twisted form;
since, by Hyodo-Kato, another twist of RIyk(X) equals RTyr(X), we get
control on RI;ys(X)®Q. In §3 we prove the above isomorphism assertion for
Perys; deduce from it the Fontaine and Fontaine-Jannsen conjectures Cepys,
Cst, Cpst, and show that the Hodge filtration completion of perys equals the
period map pqr from [B] 3.5.

I am very grateful to Bhargav Bhatt, Volodya Drinfeld, Luc Illusie,
Kazuya Kato, and the referee for valuable comments, suggestions, and cor-
rections.

1. Log crystalline cohomology: a review

The section can be divided into five parts:

(i) Log preliminaries (1.1-1.4). The main reference for log schemes is [K1];
for an expanded exposition, see [GR] Ch. 3, 7 and [Ogl]. We show that the
key existence result for pd-envelopes, proved in [K1] 5.4 for fine log schemes,
remains true for integral quasi-coherent log schemes, which is our preferred
log crystalline setting.

(i) Log crystalline basics (1.5-1.12). One finds a concise exposition of the
basics of Berthelot’s theory [Ber| in [BhdJ]; we discuss in similar vein Kato’s
log crystalline theory [K1] §§5-6, [HK] §2, including the comparison theorem
of Tllusie and Olsson.

(11i) Frobenius log crystals and the Hyodo-Kato theory (1.13-1.16). We de-
duce the key global results of Hyodo-Kato directly from the identification of
nondegenerate Frobenius crystals up to isogeny on Spec (O /p) with (¢, N)-
modules (cf. [Fa] §2, [O12] 5.3). The original approach of [HK] §5 (see also
[I113] §7) is local and uses de Rham-Witt complexes. The core of both argu-
ments goes back to Dwork ([Ka] 3.1).

(iv) The Fontaine rings and absolute crystalline cohomology of log schemes
over Ok (1.17-1.18). This is an exposition of [K2] §§3-4.

(v) Log de Rham complex in characteristic 0 (1.19). This is an exposition of
a theorem of Ogus [Og2] Th. 1.3.

1.1. Log schemes. A log scheme is denoted as (Z, M) = (Z, M, ), Z is
the underlying scheme, M is the (étale) monoid sheaf, « : M — Oy is

Tt is constructed by the same procedure as Rlcyys(X) using the Hyodo-Kato
cohomology of log schemes coming from semi-stable pairs as the input.
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the log structure map. A chart, or M-chart, for it is a homomorphism of
monoids ¢y : M — I'(Z, M) (the chart map) which yields an isomorphism
M 5 M; here My is the constant sheaf of monoids on Xg with fibers
M and Mg = (M%,«a) is the log structure generated by the prelog one
acyr : My — Og. A chart is integral if M is integral (i.e., the canonical map
M — M?#" — the group completion of M — is injective) and fine if M is fine,
i.e., integral and finitely generated.

We say that (Z, M) is log affine if Z is affine and I'(Z, M) generates M,?
quasi-coherent ([K1] 2.1) if it admits a chart étale locally, integral® ([K1] 2.2)
if M is integral, and fine ([K1] 2.3) if it admits a fine chart étale locally.
We identify schemes with log schemes with trivial log structure, and write
X for (X,0%).

The category of log schemes has finite inverse limits; the underlying
scheme functor (Z, M) — Z commutes with inverse limits ([K1] 1.6).

Let f: (Z,M) — (S, L) be a map of log schemes. A chart for it consists
of charts M — I'(Z, M), L — T'(S, £) and a map of monoids L — M such
that the evident diagram commutes. The chart is fine if both M, L are
fine.

Proposition. If (S, L) is fine, (Z, M) is integral quasi-coherent, then f
admits a chart étale locally. If (Z, M) is also fine, then f admits a fine
chart étale locally.

Proof. The second claim is [K1] 2.10. We modify Kato’s proof to cover the
first claim. Let us construct an étale neighborhood with a chart. Let {;};cs
be a finite subset of L£; that generates ﬁs/Oés. Let K ¢ L C Z! be the
preimages of Og,s and L, by the map Z! — L5, e; — ¢;. Let {k;}jc; be a
base of K, so kj = Xnjie; — Zn&iei, where n;, ngl € N. Then e;, k;, and —k;
generate L as a monoid, with k; + En;iei = Ynje;, kj+(—k;) = 0 being the
full set of relations as of integral monoid. As in [K1] 2.10, after localizing S,
the map L — L; lifts to a chart ¢z, : L — I'(S, £).

Pick any z € Z. Let us construct its étale neighborhood with a chart for
f- Localizing Z, we can assume that (Z, M) has chart M” and f*(¢;) = m;g;,
where m; € M”, g; € I'(Z,0%). Set hj := f*(cr(k;)) € T'(Z,0). Notice
that M' := M" & TI'(Z,0}), equipped with an evident chart map cpp, is
another chart for M. The elements (0, h;) + ¥n’;(m;, gi) and Xnj;(m;, ;)
of M’ are identified by cp;. Let M be the integral monoid quotient of M’

2L.e., every local section of M is the product of a global section and an invertible
function.

3In present article “integral” in the sense of “reduced irreducible” (scheme) is
never used.
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modulo the relations (0, hj) + ¥n/;(mi, gi;) = Xnji(mi, gi). Then ey factors
through cpy : M — I'(Z, M), which is again a chart, and we have a map of
monoids L — M which assigns to e;, k; the images of (m;, g;), (0, h;) in M.
This is the promised chart for f. O

FEzercises. (i) Every quasi-coherent (Z, M) admits the maximal closed inte-
gral log subscheme (Z, M)™. The log scheme (Z, M)™® is quasi-coherent,
and the functor (Z, M) +— (Z, M)™ is right adjoint to the embedding of the
category of quasi-coherent integral log schemes into that of quasi-coherent
log schemes.

(ii) If (Z;, M;), i = 1,2, are integral quasi-coherent log schemes over a fine
log scheme (S, £), then (Z1, M1) X(g,z) (Z2, Ma) is quasi-coherent.*

(iii) Suppose (T,N) is integral and (Z, M) — (T,N) is an exact closed
embedding defined by a nil ideal J C Or. If Z is affine, then for any
m € T'(Z, M) the set of its liftings to ['(T,N) is a T'\(T, (1 + J)*)-torsor.”?
(T, N) is quasi-coherent if (and only if) such is (Z, M).0

Remarks. (i) Let f: (Z, M) — (5, L) be a map of fine log schemes; suppose
S is affine, Z/S is finitely presented. Then there is f': (Z/, M') — (S', L)
having the same properties with S’ affine of finite type over Z, and a map
(S, L) — (8", L") such that £ is the pullback of £’ and f isomorphic to the
pullback of f’; for f log smooth, one can find log smooth f’.

(ii) Suppose f as in (i) is log smooth, Z is affine, and we have a closed exact
embedding (S, L) — (T,N) defined by a nil ideal J C Or; then f is the
pullback of some log smooth fr : (Zp, Mp) — (T,N') defined uniquely up
to an isomorphism.”

We denote by A%& £) and AE? £) the affine line and the logarithmic affine
line over a log scheme (S, L). Both equal Spec Oglt] as schemes, the log
structures are generated by, respectively, £ and LBN, the latter log structure
map sends n € N to t". For a log (5, £)-scheme (Z, M), a map from it to

A%S,L) is (the same as) a section of Oz, a map to Agls)yﬁ) is a section of M.

The group scheme G, acts on A%S’ £) by translations, G,, acts on AE? £) by

4Hint: Use the fact that étale locally both projections (Z;, M;) — (S, £) admit
charts with the same L (follows from the proof of the proposition).

SHint: T is affine and H>°(Ty, (1 + J)*) = 0.

®Hint: If Z is affine and M — T'(Z, M) is a chart for M, then M Xp(z v
I(T,N) — I(T,N) is a chart for V.

"By (i), we are reduced to the situation when J is nilpotent; now the assertion
is [K1] 3.14.
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homotheties. For a (possibly infinite) set I we denote by A{S’ ) AE? £ the

fiber products of I copies of A%S L)’ AE};)E)‘

1.2. Log pd-schemes. For us, a log pd-scheme is a log scheme (T, Mr)
equipped with a pd-ideal (Jr,d) (so Jr is a quasi-coherent ideal in Orp,
0 a pd structure on it). A pd-thickening of a log scheme (Z, M) is an ex-
act closed embedding ([K1] 3.1) of (Z, M) into a log pd-scheme as above
such that Oz = Or/Jr. Log pd-schemes, i.e., pd-thickenings, form nat-
urally a category. We often abbreviate (T, Mr, Jr,d) to (T, My, Jr); a
pd-thickening as above is denoted by (Z,T, M) or simply (Z,T).

Let S* = (S, £,T,7) be a log pd-scheme with p € Og nilpotent, p™ = 0.
Below a log scheme over S, or a log St-scheme, means a log scheme (Z,M)
over (S, £) such that + extends to Z (i.e., to ZOz). A log pd-S*-scheme is a
log Sf-scheme (T, M) equipped with a pd-ideal (J7,d) such that v and &
extend to a pd structure on Jp +ZO7. We can consider pd-S*-thickenings of
(Z, M), etc. Notice that Jr is a nil ideal (since for a € Jr one has a? € pJr
and p" = 0). Thus pd-S*-thickenings of (Z, Mz) have Zg-local nature.

The categories of log pd-schemes, log S-schemes, and log pd-S¥-schemes
have finite inverse limits. For a group scheme G we denote by G* its pd-
envelope at 1 € G; this is a group pd-scheme. One has G?n((Z, T)) =
(T, (1+ Jr)%).

1.3. Log pd-envelopes. Suppose S* from 1.2 is such that (S, L) is quasi-
coherent. Let Cg: be the category whose objects are locally closed embed-
dings® iy : (Z, M) = (Y, N) of log S*-schemes such that (Z, M) is integral
quasi-coherent, (Y, N) is quasi-coherent (the morphisms are maps of (Y, N)’s
that preserve (Z, M)’s). Let Tg: be the category of log pd-S*-thickenings
(Z,T) as in 1.2 such that (T, Mr), hence (Z, M), is integral quasi-coherent.

Theorem. The evident functor Tg: — Cg: (forgetting of the pd structure on
Jr) admits a right adjoint.

The theorem says that every iy in Cg: admits a factorization

(1.3.1) (Z, M) 5 (T, Mp) 5 (Y, N)

with (Z,T) € Tgs which is universal. Such (Z, T) is called the pd-S*-envelope
of iy.

8Le., (Z, M) is a closed log subscheme of an open part of (Y, ).
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Proof. Let us construct ip. When (Z, M) is fine, (Y, N) is coherent, this
was done by Kato [K1] 5.4. The idea of the general argument: after étale
localization and adding extra polynomial variables to Y, one can realize iy
as a filtered inverse limit of embeddings of fine log schemes, which brings iy
by loc. cit.; the extra polynomial variables are then factored off. Here are
the details:

(a) Suppose we have some factorization ir as in (1.3.1) and U € Y.
Consider the U-localizations iy : (Zy, My, ) = (Z, M) xy U < (U,Ny),
(Ty, Mr,) == (T, M7) xy U. If (Z,T) is the pd-S-envelope of iy, then
(Ty, My, ) is the pd-S f-envelope of ir7. The converse is true if U is a covering
of Y.

(b) The assertion of the theorem has étale local nature: If U is an étale
covering of Y and iy : (Zy, Mg,) — (U,Ny) admits the pd-S#-envelope,
then ¢ admits the pd-Sf-envelope. Proof: Let us construct the pd-Sf-envelope
(Z,T). We can assume that Z, Y, U are affine schemes, Z is closed in Y. By
(a), if U" € Yg admits a morphism to U, then iy admits the pd-Sf-envelope.
Take U’ := U xy U; let (Ty, M), (Tyr, Mr,,) be the pd-envelopes. Then
Ty is an equivalence relation on Ty by (a), and the schemes Ty, Ty are
affine (since such are Zy;, Zy). Define T as the affine scheme quotient of Ty
modulo the equivalence relation Ty, i.e., T is an affine scheme with I'(7', Or)
equal to the equalizer of I'(Ty, Or,) = I'(Tyr, Or,,). 1t is a pd-thickening
of Z over Y relative to (S,Z,v). The map Ty — T is an étale covering and
Ty = Ty X7 Ty (indeed, since our claim has étale local nature with respect
to Y, to check it we can assume that i admits pd-Sf-envelope, and then it
follows by (a)). We define the log structure My by the étale descent from
Mo,. Then (Z,T) is the pd-S*-envelope of iy by (a).

(¢) The pd-St-envelope of iy equals that of (Z, M) — (Y, N)™, so we
can assume that (Y, ) is integral. The pd-St-envelope of iy equals its pd-
Yt-envelope, where Y* = (Y, N,Z0Oy), so we can assume that (Y,N) =
(S,L). By (b), we can assume that Z, Y are affine, Z closed in Y, and one
has integral monoids M, N and charts M — I'(Z, M), N — T'(Y,N).

Pick a set of generators {m;};c; of M. Let iy : (Z, M) — (V.K) :=
AEQN) be the lifting of iy that corresponds to {m;} (see 1.1). Let us show

that iy admits a pd-Y*-envelope (T, Mi).

For a subset J of I let M(J) be the submonoid of M generated by
mj, j € J, and M(J) — Oz be the log structure generated by prelog one
M(J)z — Og; there is an evident morphism M(J) — M. Let S be the set
of triples s = (N*,1°,~%), N* is a finitely generated submonoid of N, I* is
a finite subset of I, v* : N* — I'(Z, M(I?)) is a map of monoids which lifts
the composition N®* ¢ N — I'(Y,N) — I'(Z, M). The natural order on S
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makes it a directed set, and for every finitely generated N’ C N and finite
I’ C I one can find s € S with N’ ¢ N5, I' C I°.

For s € Slet N° — Oy, K* — Oy be the log structures generated by the
prelog ones Ny — Oy, Ny, @ N[I®]y — Oy; set M?® := M(I®). The map of
monoids N*@®N[I°] — ['(Z, M?), which is «* on the first component and the
evident map on the second one, extends Z < V to a closed embedding of fine
log schemes i, : (Z, M?®) — (V,K?). Let (Z, M®) — (TS,MTS) — (V,K%)
be its pd-Y*f-envelope, where Y = (Y, N* ZOy). By [K1] 5.4, it exists
and T* is affine. When s € S varies, the pd-envelopes form an S-projective
system. Its projective limit is the promised pd-Y*#-envelope (T, M) of iy.
Indeed, (T, M) is evidently integral, hence it is quasi-coherent by Exercise
(iif) in 1.1, so (Z,T) € Ty, and the universality property is evident.

(d) Asin 1.1, (V, K) carries the G/ -action.? By the universality property,
the group pd-scheme G (see 1.2) acts on (T,MT) Let (T, Mr) be the
quotient log pd-Y¥-scheme, so T = Spec (O(T)%") and My is the sheaf
of G%—invariant sections of M. Let us show that the evident map ir :
(S, M) — (T, Mr) is the pd-Y*-envelope of iy-.

By construction, (T, Mr) is a log pd-Y*-scheme with T' affine and M7
integral. i7 is a closed embedding of log schemes since (S, M) is a closed
log subscheme of (Y, N). It is exact since iy is exact. By Exercise (iii) in
1.1, (T, M) is quasi-coherent. Thus (Z,T) € Ty:. It remains to prove the
universality property.

Suppose (Z',T") € Ty: is such that the structure map (77, M7,) —
(Y,N) sends (Z', M) to (Z, M); we want to show that there is a unique Ty:-
morphism (Z',T") — (Z,T). We can assume that Z’ is affine, so the set of
Ty+-morphisms (Z/,T") — (Z,T) is a GH((Z', T"))-torsor (see Exercise (iii)
in 1.1). So there is a unique (Z’,T") — (Z,T) that can be lifted to (Z,T).
To finish the proof, it suffices to check that every s : (Z,T) — (Z,T) is a
section of the projection p : (Z, T) — (Z,T). Now ps = id(z 1) amounts to
psp = p, which is clear since sp = g - id(z,T) for some g € Gﬁ,{((z, T)) O

1.4. Log pd-smooth thickenings. An object (Z,T) of Tg: (see 1.3) is said to
be pd-S*-smooth if the next condition is satisfied: Suppose we have (Z/,T") €
Ts: such that Z’ is affine (as a plain scheme); then any map of log (S, £)-
schemes (Z',M’') — (Z, M) can be extended to a morphism (Z',7") —
(Z,T) in Tgs.

9For g = (g;) € G, one has g*(t;) = g; 't;.



8 A. Beilinson

Remarks. (i) Suppose (Z, M) is an integral quasi-coherent log S*-scheme,
and we have its closed embedding ¢ into A(I s.c) X(S.L) Agg?ﬁ), where I, J are
two sets (see 1.1). Then the pd-S*-envelope (P, Mp) of i is pd-S*-smooth.
We call such pd-S*-thickenings coordinate ones. If (Z, M) is log affine (see
1.1), then a coordinate thickening always exists, and an arbitrary (Z,T) €
Tg: is pd-Sf-smooth if and only if it is retract of a coordinate one.

(ii) Suppose (S,L) and (Z, M) are fine, and iy : (Z,M) <= (Y,N) is a
closed embedding of log S¥-schemes with (Y, My) log smooth over (S, L)
(see [K1] 3.3). Then its pd-S#-envelope is pd-S*-smooth.

(iii) For any integral quasi-coherent log affine (Z, M) over S* there is a
universal ¢ as in (i): Take I =I'(Z,0yz), J = I'(Z, M), the embedding i is
the evident one. The corresponding (P"™V, M pu.v) depends on (Z, M) in a
functorial way.

Question. Is it true that property of being pd-S¥-smooth is étale local?

1.5. Log crystalline site. For S* as in 1.3 and a log S*-scheme (Z, M) which
is integral and quasi-coherent, the log crystalline site ((Z, M)/S*)crys =
(z/ S’)lc(;gs is formed by pairs that consist of an étale Z-scheme U/Z and
a pd-S?-thickening (U, T) € Tg: of (U, My). The coverings are étale ones,
i.e., collections of morphisms such that the maps of T’s form an étale cov-
ering. The structure sheaf Oz/g of (Z/S)CryS is Oyz/5(U,T) = I'(T,Or);

let J7/5 be its canonical pd-ideal, Jz/5(U,T) := F(T Jr), 80 Oz/5/T7/s

equals Oz, . One has a canonical morphism of topoi u'o 7 / ’E :(Z/8 )£?§S~—> Zé,

ughs, (F)(U) =T ((U/S)&%s, F).

Remark. For (Z,T) € (Z / S)Crys, any sheaf F on (Z/ S)CryS yield naturally
a sheaf F(z 1) on Zg = Tgy with I'(Z, Fz 1)) = F(Z,T). The functor F

log

F(z1) is exact, so the evident natural map u, /5

Rugbe,(F) = Fizm).

(F) — F(zr) yields one

Proposition. The category (Z/S)?Tgys has non-empty finite inverse limits.

Proof. 1t suffices to check that it has non-empty finite products and fiber
products.

(a) For (U;,T;) € (Z/S)s8, i = 1,2, let us construct their product
(U, T). One has U = Uy x zUs. To define T', consider the diagonal embedding
iy 2 (U, My) — (Y, N) := (Th, M1,) x (T, Mr,). The ideal of Oy generated
by the pullbacks of Jr, + ZOr, is a pd-ideal, so we have the log pd-scheme
Yt Let (U, T') be the pd-Y*-envelope of iy (it is well defined since (Y, N) is
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integral quasi-coherent). Our (T, M) is an exact closed log pd-subscheme
of (T, Mp+) defined as follows. Let p; be the compositions (7", M) —
(T;, M1,) = (S, L). Let J2 be the ideal in Ops generated by local sections
pi(f)—p5(f), f € Og, and (pi(¢)/p5(€))—1, £ € L. Here p}(¢) are sections of
M, with the same image in My, so their ratio is a section of O, that equals
1 on U.'0 The ideal JTQ, is quasi-coherent since (.S, £) is quasi-coherent, and
.779, C J7. Now the ideal of T in Op is the pd-ideal generated by jQQ,. Since
pi coincide on (T, Mr), our (U,T) is an object of (Z/S)L?%s. We leave it to
the reader to check that it is the product of (U;, T5).

(b) For morphisms (U;, T;) — (V,Q), i = 1,2, in (Z/S)&%s, let us con-
struct their fiber product (W, P). One has W = Uy xy Us. This is an open
subset of Uy xz Us; let (W, P') be the restriction to W of the product of
(Ui, T;) (see (a)). Our (W, P) is an exact closed log pd-subscheme of (W, P’)
whose pd-ideal J,, C Jp is defined as follows. Let ¢; be the compositions
(P',Mp) = (T;, M1,) = (Q, Mg). We can work étale locally on V, so let
us assume that V is affine and M has a chart M — I'(Q, Mg). Now J}, is
generated by sections ¢} (g) — ¢5(g), g € I'(Q,Og), and (¢} (m)/q5(m)) — 1,
m e M. O

Let f : (Z/,M")/S" — (Z,M)/S* be a map of the above data. A
presheaf F' on (Z'/S' )}f}%s yields a presheaf feoryss«(F') on (Z/S)g%,s with
ferys«(F)WU,T) := T((Uz, My, /T ) erys, F'), where Uz := U xz Z',
Tt .= (T, Mq, Jr +ZO7). If F'is a sheaf, then ferys«(F') is a sheaf. There
is an evident map Oy/g — ferys«(Oz1/50)-

Corollary. fcrys+« defines a morphism of ringed topoi fepys: (Z’/S’)IC(;%;%

1 ~
(Z/8)erss.
Proof. For (U',T") € (Z’/S/)lccgS let Cy = C¢(U’,T") be the category of pairs
((U,T),g) where (U,T) € (Z/S)s8s, g : (U, T') — (U,T) is a map of pd-S*-
thickenings compatible with f. The proposition implies that C'y has finite

inverse limits, so C% is directed. For a presheaf F on (Z/S ).13??,5, its pullback

f(;}l,s(f) assigns to (U’,T") the colimit of the functor ((U,T),g) — F(U,T)
on C]‘Z.H If F is a sheaf, then f* (F) is the sheaf associated with f. 1 (F).

crys crys
Since C7} is directed, fc_r;s commutes with finite inverse limits, so same is
true for f&,s. We are done. [

DSince (U, My) = (T', M) is an exact embedding with nil ideal J7, My is
the quotient of M7 modulo the action of 1+ J7» C OfF,, and this action is free
since M is integral.

1 C} contains a small cofinal subcategory, so the colimit is well defined.
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1.6. Log crystalline cohomology. For (U, T) € (Z/S)IC?%,S, let (U, T) be the
restriction to U C U x z...xzU of the standard simplicial object of (Z/S )L‘;%S
with terms (U,T) := (U, T)%9 (the product is computed in (Z/S)L?%,s,
see Proposition in 1.5). The construction is natural and compatible with
étale localization, hence any sheaf F on (Z/S)mg, yields a cosimplicial sheaf
(U, T) — F(U,Ty). If F is a sheaf of abelian groups, then let C'F be the
normalized complex of this cosimplicial sheaf. The functor C’ is exact. There
is an evident projection o : C'F — F.

The embedding H°C'F < F yields an isomorphism ulg/gs* (H°C'F) &
ulg}gs*(.i’:), so we have a natural map (3 : ulg/gs*(}") — ulg/gs*(C']:) right
inverse to ulg/gs* ().

Sui))}g)ose xye have .(Z, T) € .(Z/S)lccﬁis. Dulg to gxactness of C', the natural
map uZ/S*(C F)—=C F(z,r) yields one R(uZ/gS*C )F)—=C Fz,1)-

Proposition. (i) One has R(ulg/gS*C’)(]—") = Rulg)gs*(}").
(ii) If (2, P) € (2/S)&s is pd-S*-smooth, then R(ugSy C)(F) = C Fzp).
Thus

(1.6.1) RugSs,

(F) = C Fiz,p)-

Proof. Deriving a and 3, we get R(ulg/gS*C')(}" ) S Rulg/gs* (F) whose com-
position in one direction is identity; we want to check they are mutually
inverse. The problem is local, so we can assume that there is P as in (ii) and
Z is affine. Since (Z, P) is pd-Sf-smooth, one has ul;}gs*(]:) 5 HOC']-'(Zyp).
To prove (i), (ii), it suffices then to find for every F an embedding F — F
such that H7’EOC']-'(Z,p) =0.

For (Z,T) € (Z/S5)8s consider the simplicial object (Z, P,)x (Z, T') aug-
mented over (Z,T). The augmentation admits an inverse up to homotopy:
indeed, any map (Z,7) — (Z, P) yields one in the usual way, and such a
map exists since (Z, P) is pd—Sﬁ—smpoth. So the sheaf (U, T") — F(U,T") :=
F(U,T") x (Z,T)) satisfies H760C’}'(Z7p) =0.If (Z,T) is pd-S*-smooth (say,
(Z,T) = (Z,P)), then the evident map v : F — F is injective;'2 q.e.d. O

Remark. (i) Suppose (Z, P) is a coordinate thickening as in Remark (i) in 1.4.
The G x G/ -action on A{ 5.0) X(S,0) AE? ) (see 1.1)!3 yields, by universality,

2Tndeed, for U affine one can find a map (U,T") — (Z,T), which yields a left
inverse to v.



On the crystalline period map 11

a GE x G¥-action on (Z,P) (see 1.2). Then (Z,P) is a GE x GH -torsor on
(Z/S)L?%S. Thus (Z, P,) = (G x G5 x (Z, P) and (Z, P,) is the “universal
simplicial Gﬁl X GE{{ -quotient” for the GEI X Gg{ -action on (Z, P).

(ii) If (Z, P) is pd-S*-smooth, then it is a covering of (Z/S)IC?%,S.

(i) If no pd-S*-smooth (Z, P) is available, one can compute Rulé)/g&k (F) by
either of the next procedures:

— By Remark (i) in 1.4 and Proposition in 1.5, any étale hypercovering
p: U — Z with log affine (U, My, ) has a pd-S#-smooth thickening (U., P.),
1o} Rulg/gs*(}") = Rp.C' Fu . p)-

— Replace Zg by an equivalent topology Zg formed by those étale U/Z that
(U, My) is log affine. Then U + I'(U,C Fy puwiv)) (see Remark (iii) in 1.4)

is a presheaf on Z; its sheafification equals Rulgf;s* (F).

— Consider for each U € X the category S(U) of its pd-S*-smooth thick-
enings. Then'* the presheaf U — holim ¢ pye s R (U, C Fy,py) represents
Rugf, (F).

1.7. Log O-crystals and connections. For (U,T) € (Z/S)lc?f%,s its de Rham
pd-algebra Q.(U,T)/S is the quotient of the log de Rham dg algebra Q{T,MT)/(S,L)
(see [K1] 1.7, 1.9) modulo the relations d(ul”) = ul*Udu, u € Jr. This
is a sheaf of commutative dg Og-algebras on Ty = U whose terms are
quasi-coherent Or-modules (since (T, Mr) and (S, L) are quasi-coherent).
It carries the Hodge pd-filtration ™, FmQ‘(lzyT) /s = J}mfa]Q‘(lZT) /g5 one
has F™ - Ft ¢ F™*tf. We get a sheaf Q, /s of filtered commutative dg alge-

bras on (Z/S)L?r%zm QZ/S(Ua T):= 1j(T7Q(U,T)/S)‘

FEzercises. (i) If (U, T) is the pd-envelope of (U, M) < (Y,N) as in (1.3.1),
oy * r* . .

then tbe composition r Q%Y,N)/(S,ﬁ) — Q%T,MT)/(S7£) —» Q%U,T)/S is an iso-

morphism.

(ii) If (U, T) is a pd-smooth thickening and U is affine, then le/S(U, T)isa

projective I'(T, Or)-module.!?

Here is another description of Q2 q. For (U, T) € (Z/S)h?%s let (U, Ty)
be the simplicial object defined in 1.6. Let Vy, C O, be the ideal of the

13An element ((h;), (9;))ierjes € GL x G, acts as t; — t; — hy, t; = g; 't;.

14To define holim, one should take care of the usual set-theoretic difficulties.

150ur assertion is local, so we can assume that (Z, M) is log affine; by Remark (i)
in 1.4, we can assume that (Z,7T) is a coordinate thickening; now the assertion
follows from (i).
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subscheme T = Ty of 17, V:[,?j C Og, be its divided powers square. Let
T? be the closed exact simplicial log subscheme of T, whose cosimplicial
ideal in Op, is generated by Vr_[FQI ). The normalized complex N'(Op») equipped
with the Alexander-Whitney product is a sheaf of dg algebras on Ug; that

depends functorially on (U,T). Thus we have a sheaf QbZ /s of dg algebras
on (2/8)8%s, @y 4(U,T) := T(U,N (Op)).

Proposition. One has a natural isomorphism of dg algebras ¢ : QZ/S =

QbZ./S-

Proof. We will construct a natural isomorphism ¢ : Q(U,T) /s = N'(Op)

of sheaves of dg algebras on Ug. It satisfies the properties ¢° = idp, and
¢ (dlog(m)) = (pi(m)/ps(m)) —1 € VTI/V[TQI] = NY(Op») for m € Mr (here
i T{’ — T are the projections) that determine ¢  uniquely.'6

(a) Recall that, by Dold-Puppe, the normalization functor N is an equiv-
alence between the category of cosimplicial abelian groups and the category
of complexes vanishing in negative degrees; let K* be the inverse equivalence.
Both categories carry the usual symmetric tensor products ®. The functors
N and K* transform algebras to algebras (using the Alexander-Whitney
and shuffle products respectively); both send associative algebras to asso-
ciative ones, and K* transforms commutative algebras to commutative ones.
If C" is a dg algebra, then the identification of complexes N'K*(C") = C" is
compatible with the products.

Some explicit formulas: Below 0; : [0,n—1] — [0,n], 0; : [0,n] — [0,n—1]
are the standard face and degeneration maps, 0;0; = 0;0;11 = id[o,n—l]- Let
A* be a cosimplicial abelian group and C" be a complex that correspond
one to another by N' and K*. For a monotone map e : [0,m] — [0,n] we
write the cosimplicial structure map e = e4 : A™ — A" also as a — €a. One
has O™ = NKero; C A", and d = X(—1)!9;|¢. For m € [0,n] let E(m,n) be
the set of increasing injections e : [0,m] < [0,n] such that e(0) = 0.17 Let
€C™ C A™ be the image of C™ C A™ by the (injective) map e4. One has a
Dold-Puppe direct sum decomposition

(1.7.1) A" = ®m<n DecB(mm) C™.

16Gince Q7 1)/s Is generated, as a dg algebra, by Q(()U’T)/S and dlog(Mr) C

1
Q(U7T)/S'

1"The map e ~ e([1,m]) identifies E(m,n) with the set of all order m subsets

of [1,n].
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For a monotone g : [0,n] — [0, 4] the components of the map g4 : A" — A*
are as follows: For ¢c € ¢C™ one has ga(°c) = 0 if ge : [0,m] — [0, /] is not
injective, and ga(°c) = 9¢c if ge € E(m, ¢). Otherwise we have [ge] € E(m +
1,£) such that [ge]dy = ge, and ga(°c) = 9(dc) — S1<jcmer(—1)F 9€9ic,
Here 0; : [0,m] — [0, m + 1] are the usual face maps.

If C" is a dg algebra, then the corresponding shuffle product on A* looks
as follows. For e; € E(mq,n), ea € E(ma,n), c; € C™, cg € C™2 the shuffle
product “'¢;2cy vanishes if e([1,m1])ea([1,ma]) # 0; otherwise it equals
+¢(c1c2) where e € E(my + mao,n) has image {0} U e1([1,m1]) U ea([1,m2])
and =+ is the sign of the permutation o of [1, m + m/| such that o(a) equals
e tei(a) if a < my, and e~ tea(a —m) if @ > my. Notice that the product on
each ¢C™ vanishes if m # 0.

Suppose C" is a strictly'® commutative dg algebra, so the shuffle product
on A* is commutative. Let V™ be the kernel of the degeneration map A™ —
A®. Then V* is a cosimplicial ideal in A*. It carries a unique pd structure
such that the cosimplicial structure maps are pd-morphisms and /¥l = 0 for
ceC™C A™, k> 1, m > 0." More generally, suppose we have a pd-ideal
J c C° = A®. Then the pd structures on J and V* are compatible (i.e.,
extend to the pd structure on the cosimplicial ideal J they generate that
is compatible with the cosimplicial structure maps) if and only if for every
f € J,n>0one has d(f") = fln=1d(f).20

(b) Set Q' := Q(U,T) /8 and consider the cosimplicial commutative alge-
bra A* := K*(Q). By (a), the pd structure on Jr C Op = A° yields a pd
structure on the corresponding cosimplicial ideal J%; notice that A™/J} =
Or/Jr = Opy. The log structure Mp extends naturally to a log structure
on the simplicial scheme Spec A*: We define Mgpec a» as the pullback of
M by either of the n + 1 simplicial structure projections p; = Spec(d;4) :

18Which means that ¢ = 0 for ¢ of odd degree.

90ne has V" = @50 °C™ as in (1.7.1). For v € V" let v, . € °C™ be the

components of v. If we have our pd-structure, then vﬁy = 0 implies that vl¥l =

Y Il Yam,e), where P runs the set of all k element subsets of U,,~o E(m,n).
P (m,e)eP

Now take this formula as the definition of divided powers on V™. The axioms of
pd-structure are clear. To show that g4 : A® — A’ are pd-morphisms, it suffices
to check that (ga(vm..))* =0 for k > 1. This is immediate for m > 1 and follows
from strict commutativity for m = 1.

20Notice that J7 = %J @ V™, where %J C %C°, {5o} = E(0,n). So we set (°°f +
v)[k] = %, % flalylk=al  One easily checks the pd structure axioms. The compatibility
with cosimplicial structure is enough to check for the map dpa : J — JY. Then

Boa (N = (%of +df)ll = Soflrd 4 flr=Udf and o (1) = 2o 4 d (), q.e.d.
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Spec A™ — Spec A° = T, where 6; : [0,0] — [0,n] is 6;(0) = i. The pullbacks
are identified as pj(m) = (1 — d;ja(dlog(m)))pj(m) for i < j, m € Mr,
where ; ; : [0,1] — [0,n] is §;;(0) = i, §; ;(1) = 7, and dlog(m) € Q' C AL.
The log and pd structures make (U, Spec A*) a simplicial object of (Z/ S)L?%,s.
By the definition of T, there is a unique map (U, Spec A*) — (U, Ty) in
(Z/S )ﬁ‘;%s that equals idy in degree 0. It evidently takes image in (U, T7).
We have defined a morphism of cosimplicial algebras Op» — A*, hence
a morphism of dg algebras 9" : N'(Op») — N'(A*) = Q. It remains to show
that ¢ is an isomorphism: the promised identification ¢’ is its inverse.

(c) Below N* := N'(Og»). Let us first check that ¢! : N' — Q! is an
isomorphism. We have T' — T{’ and the two retractions pg,p; : T° 1b — T. Our
N! is the ideal of T in Or; it has square zero; pg yields a splitting Or &
N' = Ops and an identification of log structures p(Mr) = Mgy, The
other retraction p; amounts then to an Op-linear map ¢! : Q%ﬂ MY /(S.L)
N such that 1(d(f)) = pi(f) — pj(f), ¢L(dlog(m)) = pi(m)/pp(m) — 1.
Since p; are pd-morphisms and divided powers of degree > 1 vanish on N?,
¢! factors through Q! (cf. the computation in the last footnote in (a)). Since
the images of Op and Mr by pj and pj generate Op», ¢! is surjective. Since
P! = idg: by the construction of ¢!, ¢! is inverse to .

(d) For n > 2, let 0; : Oy — Op i € [0,n — 1], be the standard
degeneration maps, 0;0; = ;0,41 = id[ofg,l}. Then the kernel Vp» of the de-
generation map Op», — O equals ¥; Ker(o;), N = N;Ker(0;), and Ker(o;)
equals the ideal in Op» generated by ; ;+1( N!). Thus Ker(oy)® = Vp,N? =
(N2 = 0. ' ’

For ¢ € N! one has cUc = 0 (here U is the Alexander-Whitney product).?!
Thus the subalgebra of N* generated by N=! is strictly commutative. This
subalgebra is closed under differential, since N! is generated, as an Or-
module, by cycles.?? By the universality property of Q" and (c), there is a
unique map of dg algebras ¢ : 2 — N' such that ¥ ¢ = idg..

It remains to prove that ¢ is surjective, or, equivalently, that the im-
age A* of K*(¢) equals Op». Since Op» is generated, as cosimplicial al-
gebra, by Op», it suffices to show that A is a subalgebra of Or,. Notice
that A", n > 0, is generated, as an abelian group, by elements do(f),
f € Op, and ea(v1U...Uvp), v; € QY e € E(m,n), 0 < m < n. One

2 Tndeed, ¢ U ¢ := 9a(c)dp(c) = (Da(c) + 0o(c) = (01(c) + d(c))lZ = 0, since
9:(c)? = 01 (c)d(c) = d(c)? = 0.
ZNamely, d(f) and ¢*(dlog(m)), where f € Or, m € My, see (c).
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has do(flea(vs U ... Uwy) = ea(frr U... U ). Since 60]( )00, (V') €
(507j((N1> ) 0, one has 11 U... Uy, = (50’1(V1)(51’2(V2) m 1 m(V ) =
801 (v1)802(12) - .. 60.m(¥m).?> Thus ea(rq U... U Z/m)eA/(yl 1) =
5076(1)(1/1) e 5O,e(m)(Vm)6O,e’(1)(Vi) e 50,6’(m/)(]/;n’) vanishes lf 6([ ) N

¢([1,m']) # 0 and otherwise equals +e’) (v1U. ..U, UriU. ..Uy, ), where
" € E(m+m/,n), ¢"([1,m +m']) = e([1,m]) Ue'[1,m']). We are done. [
A sheaf F of Oy/g-modules on (Z/S)gﬁ%s is said to be Oz g-crystal if
for every morphism ¢ : (U',T") — (U,T) in (Z/S)g%s the pullback map
ol f(UT) — Fw,r) vields an isomorphism of Or-modules ¢*F 1) =
Fur - For such an F| let Q,, F be the normalization of the cosimplicial
T Z/S
sheaf (U, T) = F(U,T?). By Proposition, Qy/sF is a dg Q2 -module and
Q’Z/S]-" = Q’Z/S ®o,,s F- So Q'Z/S]-" is the de Rham complex for the flat
connection V :=d° : F — le/s R0, F-

Theorem. Suppose (Z, P) is a pd-S*-smooth thickening. Then the connec-
tion V(z py: Fizp) — Q%Z,P)/S ®o, F(z,p) 15 quasi-nilpotent (see [K1] 6.2).
The functor F v (F(zp),V(zp)) i an equivalence between the category
of Oz g-crystals and that of Op-modules equipped with an integrable quasi-
nilpotent connection.

Proof. This is theorem 6.2 from [K1] (it is stated in loc. cit. under the
assumption that M is fine; the proof works in our setting as well). O

1.8. Comparison with the de Rham cohomology. Below we call Rulg%*((?z/s)

and RF((Z/S)Crys,(’)Z/S) = RF(Zét,Rug/gS*(OZ/S)) simply the log crystal-

line complexes. These are Eo algebras.*! Suppose F is an Oz/s-crystal, so
Rugl, (F)is a Rughs (Ozys)-module, RT((Z/S)&5s, F) is an RT((Z/5)&5s,

Oz/s)-module.
Theorem. (i) The evident projection Q'Z/S — Ogys yields a quasi-isomor-

phism Rulg/gs*(Q'Z/S}") - Ru;/gs (F).

#Indeed, by induction by m, one has 11 U...Uvpy, = 80,1 (1) -+ . 60,m—1Vm—1) X
Im—1,m(Vm). Since 0,y—1.m(Vm) — 00,m(Vm) = 60.m—1Vm) + ea(d(vp,)), where e €
E(2,n),e(1) =m—1, e(2) =m, and ea(d(Vm)) = X 60,m—1(V])0m—1,m(V]"), we see
that 60.m—1Vm—1)0m—1,mVm) = 30,m-1¥m—=1)0,m (Vm), hence the assertion.

2., dg algebras which are commutative up to a coherent system of higher
homotopies. See [HS] for a nice, if old-fashioned, initial exposition (which explains,
in particular, the E., algebra structure on the log crystalline complexes defined
explicitly using the Godement resolution).
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(ii) For any pd-S*-smooth (Z,P) € (Z/S)L%%,s the natural map

Rulg%*(g'z/s}“) N (Q'Z/S_F)(Zyp) is a quasi-isomorphism. Thus (cf. [K1]
6.4)
(1.8.1) Rugbe,(F) 5 (Qy6F) z.p)-

Proof. The assertions are local, so we can assume that we have (Z, P) as
in (ii) and (Z, M) is log affine (see 1.1). Pick a pd-S*-smooth (Z,T) (say,
a copy of (Z, P)). Let (Z,Qx) be the product of (Z,T,) and (Z, P); this is
a simplicial object of (Z/ S)}g%s augmented over (Z, P). Consider the total
complex of the cosimplicial complex (€2, /T*]-" )(Z,Q*)- Let us show that the
pullback maps are quasi-isomorphisms:

(1.8.2) (CF)zr) = For) — Q7. F)(z.Q.) &« (%5 z.p)-

First arrow: Let us check that the maps F(z 1) — (Q.Z/Ti]:)(Zin) are
quasi-isomorphisms. By Remark (i) in 1.4, (Z, P) is a retract of a coordinate
pd-S*-thickening (Z, P'). Let (Z, Q") be the product of (Z,T;) and (Z, P').
Tlilen Q{Z,Qi)/Ti is a retra?t of Q(Z,Q;)/Ti’ so the ass;artion for QkZ,Qﬁ)/Ti .im—
plies that for Q'(Z’Qi)/Ti (since the map F( ;1) — H (QZ/TiI)(Zin) is injec-
tive). By Remark (i) in 1.6, (Z,Q}) is a G x G¥ -torsor over (Z,T;), and
we are done by the evident computation of the de Rham pd-complexes of
ng and Gﬁa.

Second arrow: Let us check that the maps (Q%/SF)(Z’p) — (Q%/T* F)(2,0.
are quasi-isomorphisms. For case a = 0, see the proof of the proposition in
1.6; the general case follows by base change since Q((lz, P)/s is Op-flat by
Exercise (ii) in 1.7.

Since diagrams (1.8.2) are compatible with maps between P’s, we see
that the simplicial structure maps (€2, / sFzp) — (2 y sF)(z,p;) are quasi-
isomorphisms. Now both (ii) and (i) of the theorem follow from the propo-
sition in 1.6, g.e.d. Il

Remarks. (i) If no global (Z, P) as in above is available, then one can com-

pute Rulg/gs*(F) using (1.8.1) and Remark (iii) in 1.6.

(ii) If (S, £) is fine and (Z, M) is log smooth over (S, £), then (1.8.1) implies

(1.8.3) Ruge, (F) 5 (Qg6F) zm):



On the crystalline period map 17

(iii) The map Q55 = Ozs sends Fy o F to jg;i]q]: (see 1.7 for the
notation). The quasi-isomorphisms in the statement of the proposition are, in
fact, filtered quasi-isomorphisms for these filtrations. The proof is the same —
just replace “quasi-isomorphism” in it by “filtered quasi-isomorphism”.

(iv) Quasi-isomorphism (1.8.1) coincides with the composition of maps in
(1.8.2) and, via (1.6.1) and 1.7, with (the normalization of) the restriction
map of cosimplicial sheaves Fp, — Fp».

1.9. Comparison with derived de Rham cohomology. We discuss log version
of Illusie’s comparison theorem [I112] Ch. VIII, 2.2.8 due to Olsson [Ol1] 6.10.

Let LQ'( z.Mm)/(s,c) Pe the derived log de Rham complex (we use Gabber’s
construction, [Ol1] §8 or [Bh2] §6, to be recalled in a moment; see [B] 3.1
for a short review and the notation used below). This is a commutative dg
Og-algebra on Zg equipped with the Hodge filtration F*. Let us define a
natural morphism of filtered commutative dg Og-algebras

Assume for simplicity that S = Spec A, £ comes from a prelog structure
L — A.» For a log affine U € Zg set B :=I'(U,Oy), M :=T'(U,My), so
we have (B, M)/(A, L) € Ca,ry- Let P(U). = Pa,r)(B, M). be its canonical
simplicial resolution (see [Ol1] 8.3), and Qpwy a1y be the relative log de
Rham complex, which is a simplicial dg algebra. Let LQ'( B.M)/(A,L) be the to-
tal complex, LQ?B,M)/(AL) =Q; Q%(U)ifn/(A,L)’ filtered by the Hodge filtra-
tion F™ := @®;>m, QiD(U)i_n J(AL)" We have the filtered complex of presheaves
U+~ LQ'( B.M)/(A,L) OD Zg; the associated filtered complex of sheaves is
quasi-isomorphic to LQ’(Z M)/(5.0)"

Let (U,T%) be the pd-Sf-completion of the embedding (U, My) <
Spec P(U)4;?% this is a cosimplicial object in (Z/S)g%s. Each (U,T?%) is pd-
Sf-smooth (see Remark (i) in 1.4), so one has the filtered quasi-isomorphism
Rulé)/gs*((’)z/s) Usw — Qrays (see 1.8). Let QHZ/S(U) be the total complex
of the simplicial dg algebra Q o(U,T"), O, s(U) = @; O (U, T"), fil-

(U)is a

tered by the Hodge-pd filtration. We see that 0, (U, T°) — 0%
filtered quasi-isomorphism, so Rulgfs*(oz/s) is represented by the filtered

z/S Z/8

complex of presheaves U +— QhZ / S(U).

Z5Otherwise do the construction étale locally on S.
Z6Notice that (U, T°) is (U, P*™V) from Remark (iii) in 1.4.
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Now the de Rham pullback r* : Qp ) /4 1y = Q'Z/S(U, T") for the map
of log schemes r : T" — Spec P(U). (see (1.3.1)) sends the Hodge filtration

to the Hodge-pd one, and (1.9.1) is the map between the total complexes.
Theorem. Suppose (Z, M), (S,L) are fine and f : (Z,M) — (S,L) is

an integral locally log complete intersection map. Then (1.9.1) yields quasi-
isomorphisms

(1.9.2) LY g pyys,0)/ F™ = R“?}gs*(OZ/S/jZ[%)'

Proof. (a) Let f : (Z, M) — (S,£) be a map of fine log schemes. Recall
(see [KS] 4.4.2, 4.4.4 or [Ol1] 6.8) that f is locally log complete intersection
map if étale locally it can be factored as (Z, M) - (Y, My ) % (S, £) with ¢
log smooth, ¢ an exact closed embedding, and Z < Y a regular immersion.
Then, by loc. cit., for any other factorization f = ¢’i’ with the first two
properties, the third one holds automatically. We say (see [K1] 4.1, 4.3) that
[ is integral at a closed point z € Z if the map Z[(L/Og ) ()] = Z[(M/O%).]
induced by f is flat, and f is integral if it is integral at every z € Z. If f is
integral at z, then it is integral on an étale neighborhood of 2.2 So for f as
in Theorem the local factorization f = gi can be chosen with g integral (so
Y is flat over S by [K1] 4.5).

(b) We return to the theorem. Its assertion is local, so, combining [K1]
3.5, 4.1, we can assume that there is a fine chart L — M for f (see 1.1) such
that Z[M] is Z[L]-flat, the map L& — M?#" is injective with the cokernel hav-
ing prime to p torison, and the map i : Z — Y := Spec(Z[M]/p") X spec(z(L]/p")
S is a regular immersion with parameters t1,...,t, € Oy. Let My be the
log structure on Y defined by the chart M, and M’, £’ be the log struc-
tures on Spec (Z[M]/p™), Spec (Z]L]/p"™) defined by M, L. The log cotangent
complex Lispec (au]/pn), 47)/(Spec (2[L)/pm)£7) €48l Lizinr)/pm ar)/@(2)/pm,1) =
(Z[M]/p™)®(ME" /LE"). By base change (we use the flatness), Ly g, )/(5,2) —
Q%Y,My)/(s,z:) 5 Oy ® (M8 /L&), where dlog(cps(m)) is identified with
acpyr(m) @ m (see 1.1 for the notation). One has (see [Oll] 8.22)
Lizmyvmy) = Lzyy = OP[1], the generators ey, ..., e, of OF cor-
respond to regular parameters ti,...,t, € Oy. By the transitivity, one

2TProof: We can assume that f admits a fine chart cpy : M — T'(Z, M), etc.,
as in 1.1, and for any m € M the function acy(m) € T'(Z,0z) is invertible if
it is invertible at z. Then f is integral. This follows from [K1] 4.1 and the next
observation: Let h : Q — P be a map of integral monoids that satisfies condition
(iv) of [K1] 4.1(i). Then for any submonoid P’ C P the map of the integral monoid
quotients Q/h~1(P") — P/P’ satisfies the same condition (iv).
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has L(Z,M)/(S/ﬁ) = Cone((5 : O? — Q%Y,M)/(S,ﬁ)‘z)’ (5(61) = dti|Z, SO
el vy s.0) = LA Cone(0). By [IlI1] Ch. I, 4.3.2.1(ii), this is equal
to Oz{e1,...,em) ®@YQ'(Y’M‘/)/(S’£), where the first factor is the divided
powers polynomial algebra.

We compute Rulg;gs*(OZ/S) using (1.8.1) with (Z, P) equal to the pd-
envelope of i : (Z, M) — (Y, M). Since i is exact, P is the pd-envelope
of Z =Y, so @j][jm}/j][gmﬂ} 5 Ogley,...,em). So, by Remark (iii) in

. lo ~
1.8, ngRuZ/gS*(OZ/S) — Ozle, - em) ®0y Ly aq/(s,c)- The above tvvac)

identifications provide an isomorphism of dg algebras gr'FLQ'(Z MY(S.L)
ngRulé)/gS*((’)Z/S), which clearly coincides with the associated graded iso-
morphism to (1.9.1), q.e.d. O

Remarks. (i) The assertion remains true, by the direct limit argument, if
(Z, M) is projective limit of log (5, £)-schemes (Z,, M) as in the theorem
with respect to a directed family of affine transition maps.

(ii) In the original theorem [Ol1] 6.10, Olsson uses his version of log cotangent
complex; there f need not be integral. For integral f Olsson’s version of log
cotangent complex coincides with Gabber’s one (that we use) by [Ol1] 8.34.
(iii) By Bhatt [Bh2] 7.22, (1.9.1) is itself a quasi-isomorphism if, in addition,
f®Z/p is of Cartier type and Z, S are Z/p™-flat. We will not use this result.

1.10. The Cartier isomorphism. Suppose our S is an Fp-scheme. Let (Y, N)
be any log Sf-scheme. Then for any (V,T) € (Y/ S)L?%s the Frobenius map
Frp kills Jp since it is a pd-ideal, i.e., F'rp factors as T' — V < T'; denote
the first arrow by Fr/.. The datum of all maps Fr/. forms an extension of the
canonical morphism of topoi ulﬁ% :(Y/S )IC?%;% Yé (see 1.5) to a morphism
Fr{, of the ringed topoi.

Let f: (Z,M) — (Y,N) be a log smooth map of Cartier type be-
tween fine log Sf-schemes; assume that Z, Y are quasi-compact and quasi-
separated.

Theorem. The Oy g-complex Rfcrys«Oz/s carries a natural finite filtration
con., called the conjugate filtration, together with canonical Cartier quasi-
isomorphisms

(1.10.1) C=Cl: g Rferysx Oz — Frijf*QEIZ,M)/(Y’N)[—q].

Remark. The conditions imply that Q‘(IZ M)/(YN) BT€ locally free O z-modules
. . q . .

o{"' ﬁmte‘ rank, f is flat, and R f*Q( Z,M)/(Y.N) ATe quasi-coherent of finite Tor-

dimension.
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Proof. For (V,T) as above, one has (R furys:Oz/5)(V,T) = RT((Zv /T)%s,
Oy, 1) = RI'(Zy, RuZ /TOZV/T)' The canonical filtration on Rulg‘g//T(’)ZV/T
yields thus a filtration cony,z). on (Rferys«Oz/s)(V,T). The filtrations
con(y,ry. are compatible with morphisms of (V,T'). They form the promised
conjugate filtration con..

Identifications (1.10.1) have local nature: they come from isomorphisms

lo ~ —
(1.10.2) C: H'Rug® 1. (07, /1) = Uy sy vm) @0, frr O,

where ® in the r.h.s. is taken for the map Fr7 : Oy — Or, by applying
RY(Zy, ).
To define (1.10.2), let us find a map C~* Q(ZV M)/(VN)®fVIOVfV Or —

HqRugg/T*(OZV/T) of graded fv Or-algebras such that for f € Oz, m €
M one has C71(f) = f*(t?), C~(dlogm) = m*(dlogt). Here f, m at the
r.h.s. are viewed as the A%TN ) and AEIT)N )—Valued maps, and tP, dlogt are

the usual cohomology classes in HdR(A(TN /(T,N7)) = HORF((A%TNT)/

(T, Nr))erys: Ony, . yr) and Hi (A (;,NT)/@, Nr)) = H'RU((AL ./
(T, NT))CWS’OA%T.NT)/T) (see 1.1, (1.8.3)). The above properties determine
C~! uniquely, so it is enough to find one such C~! locally. By Remark (ii) in
1.1, we can assume that (Zy, M) extends in a log smooth way over (T, Nr).
Now we are in the setting of [K1] 4.12(1), which provides (via (1.8.3)) C~1
By loc. cit., C~! is an isomorphism, and C of (1.10.2) is its inverse. O

1.11. Perfect crystals and base change. We are in general situation of 1.5,
so S%is as in 1.3. Let (Y, ) be any integral quasi-coherent log S*-scheme.

A bounded complex F* of Oy g-modules on (Y/S )IC?%S is an Oy g-crystal
(in derived sense) if for every ¢ : (V/,T") — (V,T) in (Y/S)%3 the pull-
back map ¢~ F wr) ]:('V, ) yields a quasi-isomorphism of Op/-complexes
Lo* Fiymy o Fiy, ) We say that F~ is perfect if for every (V,T) (Y/S)lc(i%,s
the complex f(VT) 1s Op-perfect. Perfect crystals form a full triangulated
subcategory DP“(Y/S) of the derived category Db((Y/S)Crys7 Oy/s) of Oy s-
modules.

Let now 6 : (Y, N"V)/S"* — (Y, N)/S* be a map of data as above.
Ezercise. If F~ is a (perfect) Oy g-crystal, then L6 (F") is a (perfect)
Oy jgo-crystal. For any (V,T) € (Y/S)&s, (VV,TV) € (Y7/S")%s, and a
map of log pd-thickenings 0. /p : (V¥,T") — (V,T) compatible with 6, one
has a canonical identification L8 (F ")+ vy — LGTV/T(}"éMT)).
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The next version of base change theorem [K1] 6.10 is sufficient for our
purposes. Let f : (Z,M) — (Y,N) be a log smooth integral map of fine
log schemes over Sii =St [F,; assume that Z/Y is quasi-compact and
separated. For 6 as above, let f”: (Z¥, M") — (Y”,N") be the #-pullback
of f. Then Z is flat over Y (by [K1] 4.5), Z" is flat over Y, and (Z", M")
is integral quasi-coherent (by [K1] 4.3.1 and Exercise (ii) in 1.1).

Theorem. (i) The complex Rfcrys«(Oy/s) is an Oy g-crystal, and the pull-
back map yields a canonical identification

(1111) LGZrystCTyS*(OY/S) = ngrys*(OZ”/S”)‘

(i4) If Z is proper over Y and f is of Cartier type, then Rfcrysi(Oz)s) is
perfect.

Proof. (i) We can assume that Y is affine. Computing Rferys«(Oz/s) us-
ing a finite covering of Z by affine opens, we get a finite filtration on it
with gr Rferys«(Oz/5) equal to a finite direct sum of complexes of type
R(f|v)erys«(Ouys), U C Z is an affine open. Thus we can assume that
Z is affine. Using Remark (ii) in 1.1 and (1.8.3), we see that each
R ferys«(Oz/s)(v,r) can be realized as a finite complex of flat Or-modules,
for every ¢ : (V/,T") — (V,T) in (Y/S )£‘3§S the pullback map yields a quasi-
isomorphism L¢* R ferys«(Oz/5) (v SR ferys«(Ozs) (v 1y, and the pull-
back map for 6 yields quasi-isomorphism (1.11.1).

(ii) Let us check that the complexes R ferys«(Oz/s)(v,r) are Op-perfect.
By (i), Rferys«(Oz/8)vir) 6, O1, = Rferys«(Oz)s,) (v, where Tt :=T ®
[Fp. Since p is nilpotent in Or, it suffices to check that Rferys«(Oz/s,)v,m)
is Or,-perfect, which follows from (1.10.1). O

Remarks. (a) If (V,T) € (Y/S)g%s is such that jr}n] = 0, then
Rfcrys*(OZ/S>(V,T) :> Rfcrys*(OZ/S/jz[Tg)(V,T) for m >n+ dim Z/Y.28

(b) If we drop the Cartier type assumption in (i), then R ferys«(Oz/s) v r)
is still Op-perfect for those (V,T) that the ideal Jr is nilpotent.?” In partic-
ular, Rferys«(Oz/s)v,y) is Oy-perfect. So Rferysi(Oz/s) is perfect if Y = S

(use (i)).

Z8Proof: As in the proof of (i), we can assume that Z, Y, V are affine. Then
(Z, M)y can be extended to a log smooth scheme over (T, N7) by [K1] 3.14. Now
use Remark (iii) in 1.8.

29 Proof: It suffices, by the nilpotency, to check that Rferys«(Oz/s)v,r) ol Oy
is Oy-perfect; this complex equals Rferys«(Oz/s)v,v) = <Rf*Q.(Z,M)/(Y,N))V by
(i) and 1.8, which is perfect.
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1.12. The p-adic setting; absolute crystalline cohomology. One can gen-
eralize slightly the setting for log crystalline cohomology taking for S* =
(S,L,T) a formal p-adic log pd-scheme, which is the same as sequence of
exact closed embeddings of log pd-schemes Sf — Sg — ... such that
Os,., = Os, @ Z/p" Y, T,_1 = 1,0, ,. Assume that (S, L) is quasi-
coherent, i.e., all (S, L,) are quasi- coherent. For an integral quasi-coherent
log S%-scheme (Z, M), which is a log S -scheme for n sufficiently large, one
defines its log crystalhne site (Z/S )Crys as in 1.5. One has fully faithful em-
beddings (Z/5,)/%s > (Z/Sns1)%8s < ..., and (Z/8)%s = U(Z/50)%e.
The constructions and results of 1.5 remain true in the present setting.

For a sheaf F on (Z/ S)Cryb we denote by F,) its restriction to
(Z/Sn )Crys Then F,y = ncrys(}"), where %, : (Z,M)/Sﬁ — (Z,M)/S*
is the evident map. The functor i, .,y is exact, and it admits an evident ex-
act left adjoint i, cryst, SO ZnCI‘yb sends injective sheaves to injective ones.
Therefore the functors Rferyss, Lfgys commute with the passage F +—
F(ny, and one has Rulg/gs*(}") = holimnRulg/gS LFm))s RU((Z)S)8,, F) =
holim, RT((Z/Sn) &8s, Fm)-

Ezample. For a complex F~ of sheaves on (57, S)lcrys, one has RI'((S1, Sn)}:?n%s,

Fimy) = F(S1,50), RI((S1,5)88s, F) = holim,, F (51, S,). Unless F is

a crystal, the base change map RT'((S1, S)L‘;g,s, F )®LZ/p — RT((S4, S, )cr%rs,
.7:('”)) need not be a quasi-isomorphism.

Consider now Sh = Spec (Z/p™) equipped with the trivial log struc-
ture and Z,, = p(Z/p"™) with the standard pd structure. Any integral quasi-
coherent log [F,-scheme (Z, M) is automatically a log Sf-scheme. We refer
t0 (Z, M)arys(ny = (Z,M)/SK)crys, (Z, M)arys := ((Z, M)/S)crys as the
absolute crystalline sites. One has the absolute log crystalline
complexes Rulg/gzp*(oz/zp), RUerys(Z, M) () = BT ((Z, M) crys(n)s Oz /pm))s
and RFcryS(ZvM) = RF((Z M)Cry87OZ/Z ) = RF(ZéuRUg/gZ *(OZ/Z )) =
holimy, Rlerys(Z, M) (). We denote by H¢, o (Z, M) the absolute crystalline
cohomology H'RLyys(Z, M).

If (Z, M) is an integral quasi-coherent log Z,-scheme, then for n > 1 we
set (Z, M)y, := (Zp, My,), where Z,, .= Z @ Z/p"™ and M,, is the restriction
of M to Z, C Z. We set Rlcrys(Z, M) := Rlrys(Z1, M1), ete.

Remarks. (i) If Z is a flat Z,-scheme, then (Z, M), is a log S*-scheme, and
its log crystalline complex equals RI;ys(Z, M) by the crystalline invariance
property.

crys
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(ii) For a perfect field k of characteristic p, let S,ﬁm be Spec W, (k) equipped
with the trivial log structure and Z = pW,, (k) with the standard pd struc-
ture. If (Z, M) is an integral quasi-coherent log k-scheme (Z, M), then every
its pd-thickening is automatically a W (k)-scheme, i.e., ((Z,./\/l)/S,ﬁc)CryS =
(Z, M)crys. Thus the absolute crystalline complexes of (Z, M) are W (k)-
algebras, etc.

1.13. A digression on difference equations and Dwork’s trick. Let R be a
ring, ¢ be an endomorphism of R. Denote by R, the associative alge-
bra generated by its subring R and ¢ with relation ¢r = pgr(r)e, 7 € R.
Thus a (left) R,-module is the same as a left R-module F' equipped with
a ppr-semilinear endomorphism ¢g called pr-action or simply @-action; we
usually abbreviate (F,pr) to F. Denote by R,-mod the abelian category of
R_-modules and by D, (R) its derived category.

For F1, F5 € Ry,-mod consider the map 6 : Homp(Fy, Fh) — Hom%p)(Fl,
Fy), 6 =08 —=0",8() :=E&pr,, 0"(§) :== ¢R,&, where Homg%o) is the group
of p-semilinear maps, so Ker(d) = Hompg_(F1, Fb). Set Hom%w(Fl,Fg) =
Cone(0)[—1].

Exercises. (i) The map RHompg_ (Fi,Fp) — RHom%w(Fl,Fg) is a quasi-
isomorphism, and RHom'}% (F1,Fy) equals Cone(RHomp(Fi,F;) —
RHomgf)(Fl,Fg))[—l] where RHompg, RHomgf) are computed in the de-
rived category of R-modules.3"

(ii) One has Hom%v (Fy, F») = Hompg_ (F}, F») = Hompg_(Fy, F}) where FY,
F3 are natural left and right two-term resolutions of Fj, Fh. Explicitly,
FlO = R, ®pr F1 = ©p>09 F1, where o F1 := R®yn F1, Fll_l = (SDEFl)lo
(so if Fy is R-projective, then the resolution Fll is R,-projective), and
B39 =T,>0¢%, Fo, F31 = (preF2)"°.

An R,-complex is said to be R-perfect if it is perfect as a complex of
R-modules; such objects form a thick subcategory Dgerf(R) of D(Ry). Let
Rgrf—rnod be the category of R,-modules which are finitely generated and
projective as R-modules. An R -module M is said to be nondegenerate if the
R-linear extension 905\4 t @prM — M of o) is an isogeny, i.e., oM ® Q =
M ®Q; an R,-complex C'is nondegenerate if the composition LepC®Q —
¢RC ®Q — C ® Q is a quasi-isomorphism. Denote by 70d the subcategory

of 7 formed by nondegenerate objects, e.g. we have a triangulated category
Dgerf(R) nd.

30Hint: § is surjective when F} is a free R,-module, and R,, is free as a (left)
R-module.
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Lemma. (i) Rf,rf—mod generates Df,erf(R) as a triangulated category.
(ii) If R is a mized characteristic dvr, then REY-mod™ generates DY (R)".

Proof. (i) Let C be an R-perfect R, -complex. As an R-complex, it is quasi-
isomorphic to a complex of finitely generated projective R-modules of finite
amplitude [a, b], a > b. We show that C' lies in the triangulated subcategory
Df;rf(R) of Dgerf(R) generated by Rf;rf—mod using induction by a — b.

If @ = b, then C = (H®C)[—a], H*C € Rgrf—mod, and we are done.
Suppose n =a —b > 1. Then H*C' is a finitely generated R-module. Pick a
surjection P — H®C where P is a finitely generated projective R-module.
The @p-action on H*C' can be lifted to P, i.e., there is a (p-action ¢p on
P such that P — H®C is a map of R,-modules. Consider the projective
R -resolution P! of P = (P,pp). The above surjection lifts to a map of
R-complexes g : P/[—a] — C. Since P! is quasi-isomorphic to P, C lies in
DY (R) if (and only if) Cone(g) lies in D2(R), and the latter assertion is
true by the induction assumption, q.e.d.

(ii) To make the proof of (i) work in the present situation, it suffices to
check that for C nondegenerate and any P — H®C as in loc. cit., one can
choose ¢p so that (P,¢p) is nondegenerate. Let ¢p be any lifting of the
p-action on H*C'. Let () C P be the kernel of the map P — H*C' ® Q. Then
@p preserves @, P/Q is a projective R-module, and (P/Q)®Q = H*C'®Q,
so (P/Q,¢p/q) € Rgrf—mod nd 'We can modify ¢p by adding to it any map
oRrP — Q C P which is sufficiently small in p-adic topology (here p is
the residual characteristic of R). If this map is sufficiently general, then the
resulting ¢q, hence ¢p, is an isogeny; we are done. O

Suppose now R is a p-adically complete commutative algebra, R —
lim R/p" R, and I C R is a closed (for the p-adic topology) ideal preserved
by ¢r such that the induced endomorphism ¢y of W := R/I is invertible
and g is topologically nilpotent on I (i.e., ¢ acts nilpotently on I/pI, hence
on I/p"I). Then I consists of all 7 € R such that ¢ () — 0. The projection
R — W admits a unique section s : W — R compatible with the action
of ¢ (which is automatically a ring homomorphism).?! The corresponding
base change functors 7* : W,-mod & R, -mod : i*, 7*M = R Qw M,
i*N := W ®r N = N/IN, i*m*M = M, preserve the subcategories 7P
mod; the derived functors Lz*, Li* preserve the subcategories Dgerf(?). They
preserve the subcategories of non-degenerate objects as well.

31To see this, notice that for every (set-theoretic) section s’ : W — R the se-

quence of sections p%s'¢y/" converges p-adically, and its limit s does not depend

on the choice of s’.
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We say that ¢ is strongly topologically nilpotent on I if for every m > 0
one can find a finite filtration of I by closed ppg-invariant ideals such that
wr(grl) C pmgrl.

Proposition. If W is a mized characteristic dvr and ¢ is strongly topo-
logically nilpotent on I, then the functors Lz*, Li* yield mutually inverse
equivalences

(1.13.1) Dr(W) @ Q & DE(R)™ @ Q.

Proof. (a) Let us show that for any P € WP7-mod™ and Q € RP"-mod,
one has RHomy, (P,1Q) ® Q = 0.

For any M € W,-mod consider the two-term complex C (M) :=
Hom%vw(P, M), C°(M) = Homy (P, M), C}(M) = Homyy (o} P, M). By Ex-
ercises, RHomyy, (P, M) = C'(M). Let C, (M) be the complex with the same
components as C' (M) and the differential §’(¢) = £l Since P is nondegen-
erate, C, (M) ® Q is acyclic.

The functor C' is exact. We prove that C' (IQ)®Q is acyclic by defining a
finite filtration IQ" on IQ such that for F' := gr'/(Q) one has C'(F) ~ C,(F).

For m sufficiently large, there is ¢ : P — ¢y, P with gplpw = p™lidp,
¢golp = pm_lid¢*wp. By the condition of the proposition, one can find a
finite filtration 1) on I by closed ¢-invariant ideals such that ¢r(gri) 1) C
p"erOI. Set IQ :=I10)Q.

One has pp(F') C p™F. Therefore §” on C'(F) is divisible by p™. Set x :=
Y7 (p~™6") € End(C°(F)); then 6" = pd'y, i.e., 6(1 — px) = &'. Since C°(F)
is p-adically complete, 1 — py is invertible, so it yields C,(F) = C'(F), q.e.d.

(b) The lemma and (a) imply that for every P € Dgerf(W)nd and @ €
Dgerf(R) one has RHomp,_(L7*P,Q) ® Q = RHomy, (P, Li*Q) ® Q. Thus
the two functors Lx* : DX (W)™ @ Q < DE™(R)™ © Q : Li* are adjoint.

Since Li* is left inverse to L7*, it remains to show that for Q € Dgerf(R)nd
the adjunction L7*Li*(Q ® Q) — Q ® Q is a quasi-isomorphism. We can
replace Q ® Q by Cone(L7*Li*(Q ® Q) — Q®Q), so it suffices to check that
Li*(Q ® Q) = 0 implies @ ® Q = 0. Since @ is nondegenerate, the support
S of Q@ ® Q, which is a closed subset of Spec (R ® Q), is ppg-invariant. If S
is non-empty, then this implies that Spec (W ® Q) lies in S.32 Since Q ® Q
is perfect, this contradicts the assumption Li*(Q ® Q) = 0, q.e.d. O

32Tndeed, otherwise there is » € R ~. I that vanishes on S. Suppose rmodl €
p"W*. Since pg is topologically nilpotent on I and invertible on W, for m >> 0 one
has ¢*(r) = p™(am +pby), where a,, € s(W*) and b,,, € I. Hence ¢*(r) € p"R*
since R is p-adically complete. Since S is ¢g-invariant, ¢'*(r) vanishes on S, i.e.,
S =0.
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1.14. Frobenius crystals. Suppose S* as in the beginning of 1.12 is equipped
with an endomorphism ¢g: whose restriction to (Si,£1) is the Frobenius
map Frg, r,). Then for any integral quasi-coherent (Y, N') over S’% the en-
domorphism ¢ = (Fry_ ), ¢s:) of (Y, N)/5% acts on (Y/S)%.. A Frobenius
Oy g-module is a pair (F,pr), where F is an Oy, g-module on (Y/S)E,,
©F is a @erys-action on F, ie., a map o : F — Qays(F); if F is an
Oy s-crystal, we call (F,pr) an F-crystal. Frobenius Oy g-modules form
an abelian category; let Dy ((Y/ S)IC?%S, Oy/s) be its derived category, and
DE*(Y/S) = DX ((Y,N')/S*) be the thick subcategory of perfect F-crystals,
i.e., those (F,pr) that F is a perfect crystal (see 1.11). Such an (F, ¢r) is
nondegenerate if the map Loy, (F) — F that comes from ¢ is an isogeny,
i.e., it is a quasi-isomorphism in DP“(Y/S) ® Q; the corresponding category
is denoted by DL (Y/S)d.

A morphism 6 : (Y¥,N"¥)/S" — (Y,N)/S* compatible with pg, @g:
yields the pullback functor 6, between the categories of Frobenius O-

modules. The derived functor L7, preserves the subcategories of (nonde-

generate) perfect F-crystals, and it is compatible with L6
the forgetful functor (F,¢r) — F.

Remarks. (i) The endofunctor Ly, of DE™(Y/S)" ® Q is canonically iso-
morphic to the identity functor.

(ii) For a perfect F-crystal (F, px), its nondegeneracy is a Yg-local prop-
erty. Suppose Y is affine and P = (P,Np) is its pd-Sf-smooth formal

*

erys rom 1.5 via

thickening (i.e., P, are pd—Sg—smooth thickenings of Y) equipped with a
lifting @p of pg:. Write P = SpfR, R is a p-adically complete ring, so
P, = Spec R,, and we have endomorphism ¢r = ¢} of R. Then F(P) :=
holim,, F(P,,) is a perfect R-complex equipped with a @r-action ¢ F(p)- Let
gol]_-(P) 'R ®ﬁ’w F(P) = holim,, R, ®émwn F(P,) = F(P) be its R-linear
extension. Then F is nondegenerate if and only if @lf( p) @ Q is a quasi-
isomorphism.

We usually abbreviate (F,¢r) to F, and denote by Hom,,(Fi, F2) the
group of Frobenius Oy, g-module morphisms. One has an exact sequence
0 — Homy(F1, F2) — Hom(F1, F2) — Hom(Fi, @erys«(F2)), the last arrow

is&— 90]—'25 — Perysx (‘5)90-7:1'

Lemma. For any Fi,Fs € Dg((Y/S)lg%/s, Oy/s) one has a canonical quasi-
isomorphism RHomy,(F1,F2) — Cone(RHom(Fy,F2) — RHom(F,
R@cryS*(IQ)))[_l]'
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Proof. The above exact sequence yields a map of complexes o : RHom,, (F7,
F3) = Cone (RHom(Fy, F2) — RHom(Fi, Rperys«(F2)))[—1]. Let us check
that « is a quasi-isomorphism.

The forgetful functor (F,¢z) + F from Frobenius Oy g-modules to
Oy s-modules, admits a right adjoint F — F(,. Explicitly, F,)
H”Z(]Sogrys* (]:) and PFe is the projection ano(pgrys* (‘F) - anlgogrys* ('F)
The functor F — F, is left exact and sends injective objects to injective
ones. Thus every Frobenius Oy/g-module admits an embedding into G,
where G is some injective Oy g-module. Therefore it suffices to check that a

is a quasi-isomorphism assuming that F; = F is any Frobenius Oy/g-module
and F2 = G, with G injective. Then RHom,,(F, g(¢)) < Hom(F,G) =
Cone (Hom(F,G(,)) = Hom(F, @erys« (G(p)))[—1] = Cone (RHom(F,G,)) —
RHom(F, Rperys«(G(y))))[—1], q-e.d. O

Suppose now our (Y, ) is a fine log scheme, Y is affine, and there is P
as in Remark (ii) such that R has no p-torsion. Let f : (Z, M) — (Y, N) be
a log smooth map of Cartier type with (Z, M) fine and Z is proper over Y.
Consider F := Rferys«(Oz/s). By the theorem in 1.11, F € Dg™(Y/S). The
next is a log version [HK] 2.24 of a theorem of Berthelot-Ogus [BO2] 1.3:

Theorem. The perfect F-crystal F is nondegenerate.

Proof. We use notation from Remark (ii). Set C := F(P) = RI((Z/P)5,,
Oyz/p), 50 Cpi= CRLJp" = F(Py) = RU((Z] Pa)es, Oz/p, ), C = holim,, Cy,.
Then C' carries the Frobenius endomorphism ¢ = ¢ r(p), and we want to
prove that cpc ® Q is a quasi-isomorphism.

Set Gy = Rugf, (Ozp,), G = Rughp,(Og/p) = holim, G,. These
are R,- and R-complexes of sheaves on Zg, and (i) of the theorem in
1.11 implies that G, = G ®% Z/p™. They carry natural Frobenius ¢p-
actions ¢g , pg. One has Cn = RI'(Z¢,Gn), C = RT'(Ze,G), and pc comes
from ¢g. Let gpg" - R, @k Boson, G, — G, be the R,-linear extensions of

. ~L .
g, ; set Lplg := holim,, cplgn 1 R®p .G = holim, (R, ®%{ on. Gn) — G.
. ~L .

Since RI'(Zg, ROy ,,G) = holim, (R, @f%m% Cpn) and RT(Z,- ® Q) =
RT(Z, et, ) ® Q (for Z is quasi-compact quasi-separated), it suffices to show
that gog ®RQ: (R@ﬁwg) ®Q — G ®Q is a quasi-isomorphism.

Now our assertion is Z-local, so to check it we can assume that Z is affine.
Choose a log smooth (formal) lifting (T, M7)/(P,Np) of (Z,M)/(Y,N)
together with a lifting (7 of the Frobenius compatible with vp. By (1.8. 1)

one has (G,¢g) = (2,¢7) where Q" = limQ,, Q, TMT) (PN?)a
Consider the p-adic filtration on €'; let ®* be its shlft ie., is t e
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maximal subcomplex of 2 such that ®"Q" C p™ Q™. Since cpi}(QZ) C piQ,
one has () C ®°Q". Since (2 /P°Q)®Q = 0 and Q° are R-flat, to finish
the proof it suffices to check that the R-linear map <p}l : R®R7¢R QO — o0
is a quasi-isomorphism.

Our complexes of sheaves are p-adically complete, have no p-torsion,
and ®"Q = pm®d°Q) for m > 0. Thus it suffices to show that goi}ll
R1 ®R, pp, 4 — gr%Q' is a quasi-isomorphism. Let g‘rg,Q' be the quotient of
gr%Q' modulo the subcomplex generated by the images of p't1Q! ¢ ®°0¢.
This subcomplex is acyclic, and the multiplication by p~* yields an isomor-
phism gr3Q’ = H'Q;. The composition R; @R, pr, 1 — gr3Q — g1l is
an isomorphism: indeed, its components coincide, via the previous identifi-
cation, with the Cartier isomorphism C~! from (1.10.2). We are done. [J

Remark. Tn fact, according to [BO1] 8.20, @i : R®p ., = ®°Q comes
from a natural global quasi-isomorphism R® RprY = 90g.

Ezercise. Using r-iterated Cartier isomorphism, identify the r-th differential
of the spectral sequence for the p-adic filtration on " with the de Rham
differential.

1.15. (¢, N)-modules. Let k be a perfect field of characteristic p, W :=
W (k), Ko := Frac W, ¢ be the Frobenius automorphism of W and K. As in
[F'2] 4.2, a p-module over K is a pair (V, ), where V is a finite-dimensional
Ky-vector space, ¢ = @y is a @-semilinear automorphism of V; a (¢, N)-
module is a triple (V, ¢, N), where (V, ¢) is a p-module and N = Ny is a K-
linear endomorphism of V' such that No = ppN (then N is automatically
nilpotent). One says that V is effective (or of nonnegative slope) if it contains
a @y-invariant W-lattice, hence one preserved by both ¢y and Ny . The
category (¢, N)-mod of (¢, N)-modules is naturally a Tannakian tensor Q-
category, and (V, ¢, N) — V is a fiber functor over K¢.?* Let (¢, N)*f-mod
be its abelian tensor subcategory of effective modules, and D, N(Ko)f ¢
D, n(Kp) be the corresponding bounded derived categories.

We usually abbreviate (V,p, N) to V. For (¢, N)-modules Vi, Va, we
denote by Homg, n(V1, V2) the group of (¢, N)-module morphisms, and by
Hom(V1, Va), Hom(¥) (V1, Va) the groups of Ky-linear and ¢-semilinear maps.
Let Homi,N(Vl, V) be the complex Hom(Vi,Vs) — Hom ) (V4 Va) &
Hom(V1, Vo) — Hom(®) (V1, V3) supported in degrees [0, 2] with the differen-
tial d°(§) = (pa€ — €1, Na& — EN1), d (X, 9) = Nax — pxN1 = ppot) + o1
Clearly Homy, y(Vi, V2) = HOHom’, (V1 V3).

33The same is true for the category of ¢-modules.
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Ezercise. Show that RHom,, y(V1, Va) = Hom?, \(Vi, Va).

Remark. Complexes Hom" N compose naturally, so they provide a dg cate-
gory structure on (¢, N)-modules. By Exercise, its homotopy category equals

D, n(Kop).

Let (Y, L) be an integral log k-scheme such that Y is a local scheme with
residue field k, the maximal ideal of Oy is killed by a power of Frobenius
(say, Y is Artinian), and £/Oy = Zxo. We have the category DE”(Y) of
perfect F-crystals on the absolute crystalline site (Y, £)crys (see 1.12).

Theorem. There is a canonical equivalence of triangulated categories
(1.15.1) ey + Dy n(Ko)T 5 DE (V)" ® Q.

Proof. (a) Let i° : (Y?, £°% < (Y, L) be the exact embedding with Y :=
Yied = Speck. Then Lids, : DI7(Y)" @ Q — DL (V)" @ Q is an equiv-
alence of categories. Indeed, since some power of F'r(y, ) factors through
iV, the claim follows from Remark (i) in 1.14.3* Our ey will satisfy rigidity
property (cf. [BO2] 2.1)

(1.15.2) ey = (Lids) eyo.

Thus it suffices to construct eyo. So for the rest of the proof we assume that
Y =YY ie., Y = Speck.

(b) Let £9 C L be the subset of generators of L, i.e, the preimage of
1 € Z>o = L/k*; this is a k*-torsor. Let W (t;) be the divided powers
polynomial algebra generated by elements ¢, [ € L', subject to relations
ta = la]t; for a € k*; here [a] € W is the Teichmiiller lifting of a. Let R
be the p-adic completion of W {t;), Lg be the log structure on F := Spec R
generated by ;. One has an exact embedding i : (Y, L) — (E,Lg), t; — [,
and a @-action r = ¢ on (E,LEg), ¢}(t;) =/, that extends the Frobenius
endomorphism of (Y, £). Then (E, Lg), (see 1.12) is a coordinate pd-W,, (k)-
thickening of (Y, £).

For V € (p, N )Eff—mod7 pick a W-lattice V(q) invariant with respect to ¢
and N. The R-module V(g)p := V(o) @w R carries a log connection V and a
p-action ¢y such that ¢y and Vg, preserve generators V(o) C V(g)r and
coincide there with ¢ and N. According to 1.7, the data of vector bundles
(Vioyr)n = V(o) ® R/p™ on E,, equipped with the above connection and ¢-
action yields an F-crystal on (Y, £)erys which we denote by ey (V|g)). Thus

341f FTZ’{,L) = 9h, then hi® = FTZ’{/O £0)» 50, by loc. cit., Lh}. . is inverse to

crys
0%
chrys.



30 A. Beilinson

a finite complex V" in (¢, N)*f-mod equipped with a data of lattices V(b)
invariant with respect to ¢, N, and the differential, yields a nondegenerate
perfect F-crystal ey(V('O ) on (Y, L)crys. Viewed up to isogeny, it does not
depend on the choice o V(b)' We have defined a triangulated functor ey :
Dy n(Ko)*f — DET (V)™M @ Q.

(¢) ey is fully faithful: Use Exercise above and Lemma in 1.14 (combined
with (1.8.1) and (1.13.1)) to compute the respective Ext’s.

(d) ey is essentially surjective: By (c), it suffices to check that for every
(F,pr) € DEF(Y)" the cohomology H'F belong to DL (Y)"d ® Q and
lie in the image of ey. Consider F(E, Lg) := holim,, F((F, Lg),). This is a
perfect R-complex equipped with a nondegenerate p-action, so F(E, Lg) €
DE™(R)™. The g-action on R satisfies conditions of Proposition in 1.13.%%
So, by (1.13.1), H'F(E,Lg) ® Q, viewed as an R-module equipped with
p-action, can be written in a canonical way as V ®uw R, where V is an
effective ¢p-module. Then V5, € Endg, H'F(E,Lg) ® Q preserves V (as
follows, say, from part (a) of the proof of loc. cit.); set Ny := Vg, [v. Then

(V, oy, Ny) is an effective (¢, N)-module and H'F = ey (V), q.e.d. O
Remarks. (i) To construct (Li%.)~! from (1.15.2), pick a left inverse

crys

7 (V,L) = (Y% LY to i (it is not unique if Y # Y°). Then Lx}

crys *
DY (YO @ Q — DY (Y)" ® Q is left inverse, hence inverse, to LiJs.
(ii) For F € DR (Y)", the complex e, (F) as an object of Dy,(W) ® Q is
equal to Lig;fys(}" )(Spec W, £Y), where LY, is the log structure on W de-
fined by the prelog one £° — k — W, the right arrow is the Teichmiiller
section.?%

(iii) For a map f : (Y',L")/K' — (Y, L)/k of data as above its ramification
indez is a number e such that the map Z>o = £/Oy e L')0s, = Z>o
is multiplication by e. One has L[5 ey (V' ¢, N) = 6y«(VI'(6, p,eN) where
Vi, = Ky ®r, V'

1.16. Hyodo-Kato theory. Let K be a p-adic field, i.e., a complete discretely
valued field of characteristic 0 with perfect residue field k = Ok /mg. Let
L = Lx be the canonical log structure on S = Sk := Spec Ok generated

35To check that the ¢-action on I = #;R is strongly topologically nilpotent, use
the finite filtration I D ¢,/ D t?1 D ... D t7'I, where n is sufficiently large.

3By the theorem, it is enough to identify Li\ (ey(V"))(Spec W, LYy,) :=
(eyo(V"))(Spec W, LY,) with V*, for V' as in (b) of the proof. We identify
(Spec W, L) with the exact log pd-subscheme of (E,Lg) whose ideal is gener-
ated by #;; then (eyo (V")) (Spec W, LY,) = (eyo (V) (E, L) Qg W = VoW =V
(the first equality is the crystal property), g.e.d.
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by prelog one Ox ~ {0} — Og. As in 1.12, we have log W, (k)-schemes
(S,L)p. Let v be the valuation on K normalized so that v(p) = 1; thus
v: L,/(Ok/p")* = e;{lZZO, where ey is the absolute ramification index,
i.e., the degree of K over Ko = Frac W (k).

Let f : (Z1,M1) — (S1,£1) be a log smooth map of Cartier type
with (Z1, M;) fine and Z; is proper over S;. By the theorem in 1.14,37
R ferysi(Og, /Zp) is a nondegenerate perfect F-crystal on (S1,L1)crys. Let
O (29 MY — (SY,L£Y) be the pullback of (Z;, M;) by the exact em-
bedding % : (59, L)) — (S1,L1), S = Speck, so Ligfystcrys*((’)Zl/Zp) =
ngrys*(OZ?/Z,,) (See (1111))

Choose (Y, £) in 1.15 to be either of log k-schemes (S1, £1) and (SY, £9);
by the theorem in loc. cit., we have equivalences €s, and ego = Lig;‘ysesl.
We define the Hyodo-Kato complez®® RIUwk(Z9, M) € D, n(Ko) as
€§llRfcrys*(Ozl/zp) = egglRfCO (Ozo/7,) with operator N replaced by 6;{1]\7.

Tys*

Remark. The normalization of N was chosen to make the Hyodo-Kato
complex compatible with base change: If K’ is a finite extension of K,
S" = SpecOg, etc., and (Z1, M})/(S1, L)) is the pullback of (Z1, M),
then RIyk (2, M) = Rk (29, M?) ® K|, by (1.11.1) and Remark (iii)
in 1.15.

Let us show that the Hyodo-Kato complex controls, up to isogeny, the
relative log crystalline cohomology of base changes of f. Let 6 : (S7,£7) —
(S1, £1) be a map of integral quasi-coherent log schemes, (E™, L) = lim(En,
Lg,) be a p-adic pd-thickening of (S7, £1) over W (k). Suppose S7 is affine,
so we have a p-adic ring A equipped with a pd-ideal I such that Spec A/I =
S1, E, = SpecA,, A, = A/p". Let f~: (Z1,Mi) — (S1,L7) be the
6-base change of f. Consider the A-complex RT¢ys((Z7/ EN)IC?%S, Ozi/E) =
holimnRFCIyS((ZI/E;L)L(;%S, OZ;/E;)- Any endomorphism ¢ = pg-of (E~, L)
that lifts the Frobenius endomorphism of (ST, £71) and is compatible with ¢
on W (k), acts naturally on our A-complex.

The datum of § and (E7, Lg) yields the Fontaine-Hyodo-Kato G,-torsor
Spec A, over Spec Ag, Ag = A®Q.% Namely, let £5 be the monoid of pairs
(I,I") where | € £y and "€ I'(E", L) lifts the pullback of [ in £7. We usually
abbreviate (1,17) to {"and write v(I") := v(l) € Q. Our Ly is an extension of
L1 by (1+1)*, and there is a natural embedding k™ — Ly, a — (l4,13) :=
the images of the Teichmiiller element [a] € W (k)™ in (Ox/p)*, A*. Then

3Tapplied to Z = Z1, Y = Sy, and S =Spf (Z,).

38 Remark (ii) in 1.15 implies that this definition amounts to the original one
from [HK] §3.

3901, [K2] §3.
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Aj is an Ag-algebra equipped with a map of monoids log : Lg/k* — Aj
that coincides on (14 I)* with the composition (14+1)* — I — Ag — AJ,
where the left arrow is the logarithm defined by the pd structure, and such
that this datum is universal. Let N be the Ag-derivation of Af such that
N(log(I")) = —v(l"). Since N is locally nilpotent, Spec A, carries a G4-action
that integrates N (i.e., N acts as the standard generator of Lie G,).
Lemma. (i) Spec Af is a Ga-torsor over Spec Ag.

(i) Any Frobenius lifting ¢ = ¢~ as above acts naturally on Af), and N =

peN.

Proof. Since v : (£1/k*)¥ @ Q = Q, for any I” € L5 with v(I") # 0 the
element log(l”) freely generates A7, over Ag. This implies (i). Then ¢ acts
on Af by transport of structure, and (ii) follows since v(¢(I7)) = pv(I"). O

The Hyodo-Kato complex carries a natural Gg,-action that integrates
the nilpotent endomorphism N. Let RIyk(Z?, M?)ZQ be its twist by
the Fontaine-Hyodo-Kato torsor. Explicitly, RTyk(Z), M?)7, 0= (RTyk (29,
M) @, A@)NZO, where N acts as N ® id 4+ id ® N. Another description:
Any I” € Lg/k* such that v(I") # 0 yields a trivialization s;- of the tor-
sor defined by the equation log(I")(s;) = 0; one has s~ = s;-+ a, where
a=a(l’,I") :==v(l") tlog(I") —v(l")"tlog(I"") € Ag. Thus every [ as above
yields an identification ay-: RTyk (29, M9) @k, Ag — Rk (29, M?)Q@, and
ap-= arexp(a(l”;7)N).

Theorem. (i) The A-complex RI’CTyS((Zi/E~)18%s,OZ;/E) is perfect, and
one has chrys((ZI/E;z)lgﬂgys; OZI/E;) = chrys((ZI/E~)lco1%37 OZI/E~)®LZ/pn'

(ii) There is a canonical Hyodo-Kato quasi-isomorphism of Ag-complezes
(1.16.1) vt RUg(29, MOy = RUerys(Z7/E7)8 0, Oz 157) © Q.

If we have a Frobenius lifting wg~, then v commutes with its action.

Proof. (i) By the theorem in 1.11 and Exercise in loc. cit., Rfays«(Oz;/z,)
is a perfect Og; /7 -crystal. Its value on (57, Ey) equals RFCTYS((ZI/E;)£?§,S,
Oz:/pz). So the latter complex is A,-perfect and RFcrys((ZI/E;H)}f;%,s,
Ozi/p:,,) @4 . An = Rluys((Z1/E7)8%s, Oz;/p;)- This implies (i) since
RFCWS((ZI/E)IC(;%& OZI/E”) = hOhmnRFcrys((ZI/E;L)IC(g& OZI/E;)-

(ii) To define ¢, it suffices to have isomorphisms ¢ = oy~ 1 Rk (29,
M) @k, Ag = Rf‘crys((ZI/E~)1£§s, Oz;/E-) @ Q such that ¢~ = v-exp(a(l”
I")N) for I"in a given nonempty subset of Lj/k*. We take the subset of
= (1,1") with v(l) = ex".
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We use the notation of 1.15. Picking an element | € £;/k* such that
v(l) = e} amounts to a choice of 7 : (S1,L1) — (S, £Y) left inverse to
i+ (89, L) < (S1,L1) (we assign to m; the 7}-image of a generator 1° of £Y).
Picking (I,17) € L§/k* amounts to a choice of a morphism of pd-thickenings
- E~ — E that extends m6 (we assign to ;- the 0}--image of the generator
to of Li/k™, see part (b) of the proof of the theorem in 1.15). By Remark (i)
in 1.15, LﬂfcrysengF}K(Z?, M = R ferys«(Oz,/2,) ®Q, so, by the theorem
in 1.11, L(m0)%ys€s0 RTtk (29, MY) = R ferys«(Oz;/2,) © Q. Evaluating on
(51, Er) and using Exercise in 1.11, we get L0 (ego (R (27, MY))(S?, E)) =
Rl“crys((Zi/EN)é?r%s, Oz;/57) ® Q. By part (b) of the proof of the theorem in
1.15, one has ego (RTux (27, M9))(SY, E) = RLyk (2, M) @y i) R, so the
previous isomorphism can be rewritten as identification Rlyk (27, MY) ®k,
Ag = Rlewys((Z1/E )Crys, Ozl/E~) ® Q, which is the promised ¢~

The compatibility between ¢;”s for different ["follows from the description
of the connection on ego (Rt (2, MY))(SY, E) in terms of N, see the proof
of the theorem in 1.15. Precisely, it suﬂices to compare the compositions of
u- and - with a power of the Frobenius action on RIyk(Z?, M?). Choose
n such that {P" = """, Then Fr"mf = Fr"m; 0, hence we can compare ¢" 0
with "0~ integrating the connection, g.e.d. O

Ezample. Let (Z, M) be a fine log scheme log smooth over (S,L£) such
that Z is proper over S and (Z, M), = (Z1, M) is of Cartier type over
(S, L)1. Consider 6 = id(g, r,) and (E,Lg) = (S,£), so A = Og. Then
RI'((Z1/5n )CryS’OZl/S ) = RF(Zn,Q'( M) /(S.L)n ) by (1.8.3) and the in-
variance property of crystalline topology. Thus RI'((Z;/ S)crys,(’)z1 /) =
RI'(Z, Q7 my/s, )), and (1.16.1) becomes the classical Hyodo-Kato quasi-
isomorphism [HK] 5.1 (here Zg == Z ®0, K)

(1.16.2) wr : Rk (27, MY = RF(ZK’Q(ZK,MK)/K)'

1.17. Absolute crystalline cohomology of O /p. Let (Y, Ny) be an integral
quasi-coherent log scheme over Z/p such that the monoid Ny /Oy is uniquely
p-divisible. The next lemma was pointed to us by the referee:

Lemma. One has Yerys = (Y, N)crys, t.€., every pd-thickening P of Y over
Z/p" carries a unique log structure Np.

Proof. Let us construct Np; its uniqueness follows from Exercise below. Let
/\/3(,”) be a copy of Ny, and o™ : ./\/'1(/") — Op be the map a — a(a)?",
where @(a) is any lifting of a(a) € Oy to Op. This map is well defined
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(indeed, for b € Oy and ¢ € Jp one has (b+ c)P" = b" since ¢ € pJp). It
is a prelog structure on P; our Np is the corresponding log structure. The
map J\f}(fn) — Ny, a — aP", lifts the embedding Y < P to an embedding of
log schemes (Y, Ny) < (P,Np), which is exact due to the condition of the
lemma. U

FEzercise. Show that Np satisfies the next universal property: For any (Z, T,
Mr) € Tzypn (see 1.3) every map of log schemes (Z, Mz) — (Y, Ny) and a
map of pd-thickenings T — P that restrict to the same map Z — Y lift in a
unique manner to a morphism log pd-thickenings (Z, T, M) — (Y, P,Np).

As in 1.16, set Ky = Frac W, where W = W(k), k is a perfect field. Let
K be an algebraic closure of Ky, O be its ring of integers, k = O /mg
the residue field. Let £ be the canonical log structure on S := Spec O
generated by the prelog structure Oz ~ {0} — Og. Let v be the normalized
valuation on K, v(p) = 1, so we have v : [I/O;( =L1/(0g/p)* = Q.

Consider Fontaine’s ring Acys from [F1] 2.2, 2.3. This is a p-adically
complete ring such that Acysn = Acrys/p™ is a universal pd-thickening of
Og/p over Wy. Let Joysn be the pd-ideals, Acrysn/Jerysn = O /p. Set
Ecrysn := Spec Acrysn- B B

The log structure £ on Spec(Oj/p) = Sp satisfies the condition of
the lemma. So it extends in a unique manner to an integral log structure
Lerysn o0 Eerysy. By Exercise, the pd-thickening (S, £)1 < (Eerysn, Lerysn)
is universal, i.e., for (Z,T) € Tw, every map h : (Z,M) — (S, L) of log
k-schemes extends in a unique way to a Tyw,-map hr : (Z,T) = (S1, Ecrysn)-

The Frobenius map ¢ lifts to (Ecrysn, Lerysn) by universality.

The log structures Lerysp, are mutually compatible. Thus we have the log
structure Lerys = Mﬁcrysn on Fgys = Spec Agrys such that Lepys

Ecrys n

Lerysn- Explicitly, the identifications Lerysnp| Eeryem 5 Lerysm for n > m come
from the maps Egn) — Egm), I — "™ (1), and the log structure Ly comes
from the prelog one o, = Ligla(") t Ly = LiLnﬁ_gn) — Acrys.
Ezercise. One has L, S{\e Lerys 1 p(A) = AP}.40

~ Our (S1, Ecrysn) is a final object of the absolute crystalline site
(51, £1)erys(n) (see 1.12) by Lemma, so for any sheaf JF its global sections are

equal to F(S1, Ecrysn). The étale topology of Eerysy is trivial, so the higher
cohomology vanish and

(1.17.1) RT((S1, L1)erys(n)> F) = F(S1, Eerysn)-

“OHint: dimg, {b € B,y : ¢(b) = pb,b € F'} = 1.

crys
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Thus for a sheaf F on (57, E_l)crys one has

(1.17.2)  RIU((S1,L1)crys, F) = F(S1, Eerys) 1= holimy, F(S1, Ecrysn)-
In particular,
(1.17.3) Rlerys(S, L) (n) = Acrysn,  Rlerys(S, L) = Acrys.

1.18. Absolute crystalline cohomology of log schemes over O /p. Let f :
(Z1,M7) — (S1,£1) be a map of log schemes, its source is integral quasi-
coherent. Then for any sheaf F on (Z71, M1)crys (see 1.12) one has a natural
identification

(1.18.1) RT((Z1, M1)eryss F) = RU(((Z1, M1)/(S1, Eerys))eryss F)-

Namely, consider fcryg (21, MT)erys — (Sl,ﬁl)cry;; then the Lh.s. of (1.18.1)
is RI'((S1, El)crys, R ferysx F), the same is true for the r.h.s. by (1.17.2).

Let K C K be a finite extension of Ky, and § = 0k : (S,£) — (S, L) =
(Sk,Lx) be the map defined by the embedding K < K. Suppose our
f is the base change of f : (Z1, M1) — (S,L£)1 by 61, i.e., we have 07 :
(Z1, M1) — (Z1, M1) such that the square (f, f,01,0z1) is Cartesian, and f
satisfies the properties from 1.16. Applying the theorem in 1.16 to ST = S,
E = Eqys and using (1.18.1) for F = Oz , we get (recall that B, =
Acrys ® Q; see 1.12 for the rest of the notation):

Theorem. (i) Rlcpys(Z7, M7) is a perfect Acpys-complex, and RIrys(Z7,
MI)(n) = chrys(ZIa MI) ®L Z/pn = chrys(ZI, MI) ®Am;sACTysn-
(i) There is a canonical quasi-isomorphism of Bcﬁ,ys—complefces

(1.18.2) tergs + RUm(Z7, MY) Gy = RTerys(Z1, M1) ® Q

compatible with the action of . [

Remarks. (i) The ring A7, from 1.16 equals Fontaine’s ring Bf. Indeed, by
[F1]3.1, B} isa B, s-algebra equipped with a monoid map log : Lerys/k™ —
B, that equals the logarithm defined by the pd structure on (1+Jeys) ™, and
such that this datum is universal. Since the evident map Ly — Lerys yields
an isomorphism (£5/k*)8 @ Q = (Lerys/k™ )8 ® Q, the assertion follows.
The derivation N and the Frobenius action ¢ from 1.16 coincide with those

from [F1] 3.2.
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(ii) Suppose our f is such that the datum of (K, (Z;, M1),0z1) as
above exists, but we don’t want to specify one. All such data form a cat-
egory in an evident manner; since S; is faithfully flat over Sj, it is an or-
dered set, which we denote by =;. In fact, Z; is directed. For a morphism
(K',(Z{, M}),0%,) — (K,(Z1,M1),0z1) in E1, one has a canonical iden-
tification RIyk (29, M) @k, K = RImk (2%, M?) (see Remark in 1.16),
and isomorphisms (1.18.2) are compatible with it. Set RIyk(Z71, M71) :=
h_IF}EIRFHK(Z?,M?); this is a complex of (¢, N)-modules over K}**! func-
torial with respect to morphisms of X’s, and (1.8.3) provides a canonical
isomorphism compatible with the action of ¢

(1.18.3) terys + RUnk (27, M1)Gy = Rlurys(Z7, M1) ® Q.

Ty

Since Spec BY is a G,-torsor over Spec Bys (see Lemma in 1.16), (1.18.3)
amounts to a quasi-isomorphism of B;Lt—complexes compatible with the ac-

tion of N and ¢
(1.18.4) terys + RUmk (27, M1) s =+ Rlerys(Z1, M1) ®% . B

Here RTuk (Z1, M1)g+ = RTuk (27, M1) @ryr Bf.

(iii) Suppose (Z1, M71)/(S,L);1 is reduction mod p of a log scheme

(ZM)/(S, L). Assume that there exists a datum (K, (Z, M),07), where
K C K is a finite extension of Ky, (Z, M)/(S, L) is a log scheme that sat-
isfies conditions of Example in 1.16, and 0z : (Z5 M) — (Z, M) is an
identification of (Z7, M") with the #-pullback of (Z, M). Again, such data
form a directed set Z, and the reduction mod p map Z — =; is cofinal. Iso-
morphisms (1.16.2) are compatible with morphisms in =, and their Z-colimit
is a natural isomorphism (here Z; = Z ®0, K)
(1.18.5) tar + RTk (21, M) = RU(ZR, Qe iy i0)-
1.19. Log de Rham complex in characteristic 0. Let (Y,N') be an integral
fine log scheme log smooth over a field F' of characteristic 0, and Y be the
open subset where the log structure is trivial. The embedding j : Y — Y
is affine. The next result is due to Ogus [Og2] 1.3; the key idea of the proof
is borrowed from [D].

Theorem. If the sheaf of groups N9"/Os has trivial torsion (e.g. if N
is saturated), then the natural map ry : Q(YN)/F — j*Q'YO/F s a quasi-
isomorphism.

4“1The maximal unramified extension of Ky in K.
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Proof. (i) We want to prove that Cone(ry) is acyclic. This is a complex
of quasi-coherent Oy-modules whose differentials are differential operators.
Let Cy be corresponding complex of induced D-modules on Y, see [S]; here
D-modules on a singular variety are understood in the usual way (using
closed embeddings into a smooth variety). By loc. cit., Cone(ry) is quasi-
isomorphic to the de Rham complex dR(Cy), so it suffices to show that Cy
is acyclic. We proceed by induction by dim Y.

(ii) Our claim is étale local, so, by [K1] 3.5, we can assume that ¥ =
Spec F[N] for a fine monoid N, N’ comes from the N-chart. Since N8 /Oy
has trivial torsion, we can assume that N® has trivial torsion. Then T :=
Spec F[N#] is a torus which acts on Y, and Y = T is the open orbit.

(iii) Cy is acyclic outside Y For a closed y € Y not fixed by T, let us
find an étale neighborhood U of y such that Cy is acyclic. Pick n € N~ {0}
with a(n)(y) # 0 and then a 1-parameter subgroup G' C T' such that n|g is
nontrivial; set Z := a(n) " 1({1}) CY.Ow Uis G x Z =Y, (g,2) — g(2).
Since (U,Ny) = Gx (Z,N|z), Cy is quasi-isomorphic to the pullback of C
by the projection U — Z; since Cz is acyclic by the induction assumption,
Cy is acyclic.

(iv) By (iii), Oy = i+Ri'(Cy) where i : YT < Y. Since Y7 is a single
point if nonempty, Ri'(Cy) = RT4yr(Y,Cy), which is the cone of I'(ry) :
F(Y’Q.(Y,N)/F) — IN(T, Q’T/F) since Y is affine. It remains to check that
['(ry) is a quasi-isomorphism. The T-action on Y yields an N&'-grading on
the complexes. Since QQ/F = Or ® A'N# | the n-component I'(T, Q‘T/F)n,
n € N8 equals FQA N8 with differential £ — nA£. Since Q€Y7N)/F =0y®

A*N® the map I'(ry) is injective and its image is the sum of components
(T, Q'T/F)n for n € N. We are done since I'(T, Q'T/F)n is acyclic for n # 0,
hence for n € N&" ~ N. O

2. The h-sheaf Ays and the crystalline Poincaré lemma

2.1. The next general format will be of use. Let Varg be the category
of algebraic varieties over a field F' (i.e., separated reduced F-schemes of
finite type). Let Varpgy, be the corresponding h-site (see [SV] or [B] 2.4); for
X € Varp let Xy, be the h-site of X. For a complex P of abelian groups we
denote by Pyq,,., the corresponding complex of constant h-sheaves; as in [B]
(1.1.1), PRZ, := holim,, P @ Z/p", PRQ, := (PRZ,) ® Q.

Let A be a complex of h-sheaves on Varg. Set A := A(Spec F'); one has
an evident canonical morphism Ay, — A. We say that A is p-adically
constant if the map (A @Y Z/D)vary, = Avare, @ Z/p — AR Z/p is a
quasi-isomorphism in the derived category of h-sheaves D(Vargy,).
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Remarks. (i) For a p-adically constant A the map (A ®F Z/p™)yvar,, —
A®F Z/p" is automatically a quasi-isomorphism for every n > 0.
(ii) p-adically constant complexes form a thick subcategory of D(Varpy,).

Proposition. (i) For a p-adically constant A as above and X € Varg, one
has canonical quasi-isomorphisms

(211)  RD(XpA) ® Z/p" 3 RD(X a0, Z/p") Gy (A Z/p").

(ii) If, in addition, F' is algebraically closed and p is prime to char F, then
one has a canonical quasi-isomorphism

(2.1.2) RI(Xp, A)RZ, = RTa(X,Zy) Rz, (ARZy).

If A is an E algebra, then these are quasi-isomorphisms of Eo algebras.

Proof. (i) (2.1.1) is the composition of canonical quasi-isomorphisms RT'( X},
A) @F Z/p" = RI'(Xyn, A @b Z/p") & RI(Xy, A @ Z/p") & RI'(Xe,
ARl Z/p") & RI'(Xet, Z/p") ®é/pn (A @D Z/p™), the first < comes from
Remark (i), the second one comes since, by Deligne’s cohomological descent,
the étale and h-cohomology with torsion coefficients coincide (see Remark
in [B] 3.4), the third one is [G] 3.3.

(ii) By the condition on F, the complex Rl (X,Z,) := holim,, RI'( X,
Z/p™) is Zy-perfect and Rl (X, Z,,)@épZ/p” = RU(Xg, Z/p™). Thus (2.1.1)
can be rewritten as RI'(Xy,, A) @ Z/p" 5 RT(X,Z)) ®£p (A Z/p").
Applying holim,,, we get (2.1.2). O

2.2. From now on K is a p-adic field as in 1.16. Let (V, V) be an ss-pair
over K, see [B] 2.2(c). As in [B] 3.2, we view it as a log W (k)-scheme with
underlying scheme V. The final object Spec(K,Of) of Var$ is (S, L) (see
1.17), so (V, V) is a log scheme over (S, L).

Asin 1.12, one has the absolute log crystalline complexes RIcrys(V, \7)@)
and Rlerys(V, V) = holim, Rltys(V, V)(n). By (1.17.3), RIeys(Spec(ks,
Og)) = Acrys.

According to the lemma in [B] 4.1, there is a finite extension K of
Ko, K C K, and a log smooth integral map f : (Z,M) — (S,£) =
(Spec Ok, L) with f; of Cartier type, together with an identification of
(V,V)/(S, L) with the pullback of (Z, M)/(S,L) by 0 : (S,L) — (S, L) (see
1.18). By (i) of Theorem in 1.18, one has:

Proposition. RI.(V, V) is a perfect A crys-complex and R rys(V, V) @
Z/pn :> chrys(v, V)(n) . U

s
K
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Remark. Enlarging K, we find that any finite diagram of (V,V)’s comes
from a diagram of (Z, M)’s over common (S, L).

2.3. Let Aeys be h-sheafification of the presheaf (V,V) +— RIeys(V, V)
on Var$ (see [B] 2.6).42 This is an h-sheaf of Eoy Agys-algebras on Varg
equipped with the Frobenius action ¢. Since h-sheafification is exact,
Acrysn = Acrys @Y Z/p™ equals the h-sheafification of the presheaf (V, V)
RTerys(V, V) () by Proposition in 2.2.

Theorem (the crystalline Poincaré lemma). Ay is p-adically constant.

Proof. Since (Acrys1)vVare, — HAcrys1, we need to show that H>Acrys1 =
0. It suffices to show that every (V, V) € Var% admits an h-covering (V', V') —
(V, V) such that the map H>ORLrys(V,V)(1) = H7°Rleys(V', V') (1) van-
ishes. By the next lemma, any composition of dimV + 1 p-negligible h-
coverings (see [B] 4.3) does the job, so we are done by the theorem in [B]
4.3.

Let (V' ymtl) Ymg (V1, V1) be p-negligible maps in Vars.

Lemma. The composition ToRTerys(V1, Vl)(l) — TR eys(V L, Vm“)(l)
vanishes if m > dim V1.

Proof of Lemma. Choose K and f; : (Z!{, M*) — (S,L) = (Spec Ok, L)
for (V/, V%) as in 2.2 so that 1; come from morphisms v; : (Z+1,
M) = (Z', M") over (8, L). Since RU(Z{, 9y vy, qs.00,) = BU(Z',
Q?Zi’M,‘,)/(S,L))) ®6, (Ok/p) and ¢; is p-negligible, we know that the 1
morphisms RU(Z3, 985 w0y, /(5.00.) — RT(Z7, Qs pgirny, js.0))> & > 0,
and 7=oRI'(Z1, Oyi) — T>0RF(Z{+1, (’)Z;-Jrl) vanish as maps in the derived
category of O /p-modules.*> We are done now by (1.10.1), since the span
of the conjugate filtration on the source is [0, dim V'!]. O

2.4. For X € Varg set Rltys(X) := RI'(Xp, Acrys). This is an Eog Acrys-
algebra equipped with the Frobenius action ¢. The Galois group Gal(K /Kj)
acts on Varg, and it acts on X — Rfcrys(X ) by transport of structure. In
particular, if X is defined over an extension K C K of Ko, X = Xg ®x

2To see Acrys explicitly, one computes the complex of presheaves (V, V)
Ry (V, V) using Godement’s resolution, sheafifies it for the h-topology on Var,
and views the result as a complex of h-sheaves on Varg.

43For O /p is faithfully Ok /p-flat and RT(Z?, Q((lzi,/\/li)/(&ﬁ)) are O /p-perfect

complexes.
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K, then Gal(K/K) acts naturally on Rluys(X). We write HE (X)) =
H" R rys(X).

By the theorem in 2.3, the proposition in 2.1 provides canonical quasi-
isomorphisms of Eog Acrysn-algebras

(24.1) RTerys(X) @" Z/p" 5 RT(Xet, Z/P") ®F jpn Acrysn

and, since Acrys — Acrys®Zyp, a canonical quasi-isomorphism of Eqq Acrys-
algebras

(2.4.2) Rlerys(X)®Zy = Rlet(X,Zp) @2, Acrys.

2.5. To control Rleys(X) ® Q, we use its connection with the de Rham
cohomology provided by the Hyodo-Kato theory:

For an ss-pair (V, V) over K, set RI'k(V,V) := RTuk((V,V)1), see Re-
mark (i) in 1.18. By loc. cit., one has natural isomorphisms tcrys
Rk (V, V)TBSZ-yS 5 Rlys(V,V) @ Q, tar : RTuk (V, V)% 5 RUur(Vig, Vi).
Let Am be h-sheafification of the presheaf (V,V) — RTuk(V, V) on Vars;
this is an h-sheaf of Eo, K{)"-algebras on Varg equipped with ¢p-action and
locally nilpotent derivation N such that Ny = ppN. For X € Vary set
Rk (X) := RI'(Xh, Ank), H{(X) := RIuk(X). We get canonical quasi-
isomorphisms**

(2.5.1)
Lerys RPHK(X)EJr = chrys(X) ®RQ, tgr: RFHK(X);-{ 5 RFdR(X)

crys

compatible with the Gal(K /Ko)-action; here T, , 7. are the crystalline and

de Rham Fontaine-Hyodo-Kato twists (they commute with the passage to
h-sheafification and RI).

Proposition. (i) For any (V,V) € Vars the canonical maps RTpys(V,V)®
Q — RIys(V) @ Q, RUp(V, V) = RI'p (V') are quasi-isomorphisms.

(ii) For every X € Var the cohomology groups H{,, (X) ® Q, Hip(X) are
free Bjrys—modules, resp. K" -vector spaces, of rank equal to dim H7,(X, Q).
The same is true for the relative cohomology groups for a map of varieties.

Proof. (i) The map RT4r(V,V) — RI4qr(V) is a quasi-isomorphism by
usual mixed Hodge theory (see (i) of the proposition in [B] 3.4). Using tqr, we
see that RIyk (V, V) = RIuk(V); applying terys, we get Rlerys(V, V) @ Q =
Rlerys(V) @ Q.

4 Here RTyR is Deligne’s version of the de Rham cohomology, see [B] 3.4.
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(ii) One has dimg H]i (X) = dim H (X, Q,) (see (ii) of the proposition
in [B] 3.4). Now use tqr and Lerys as in (i). Ditto for the relative cohomology.
O

Ezxercise. Assertion (ii) remains valid for any finite diagram of varieties.

2.6. Assertion (i) of the above proposition can be generalized as follows.
Let (Z, M)/(S, L) be as in Example at the end of 1.16 with K a subfield of
K. Denote by (Z7; M) the pullback of (Z, M) by (S, L) — (S, L) (see 1.17,
1.18 for the notation), by (X, M) the generic fiber of (Z M), i.e., the
pullback of (Z, M) to K, and by X C X the open subset of triviality of the
log structure. Let us define canonical maps

(2.6.1)  Rluys(Z3 M) — Rlgys(X), RTuk(Z7, MY) — RTuk(X).

Consider the arithmetic pair (X, Z") over K, and pick any h-hypercovering
(V,,V) of (X,Z") by ss-pairs (see [B] §2). One has an evident map of
log schemes®® (X, Z7) — (Z, M), so (V,,V.) is a simplicial log scheme over
(Z,M"). Our maps are compositions Rlys(Z7M7) — Rleys(V, V) —
Rleys(V)) ¢ Rlgys(X) and ROk (Z9,M9) — ROk(ZZ3M) —
Rk (V., V) — RIyk (V) < Ry (X).

Suppose the sheaf of groups M%—; /O% has trivial torsion (e.g. My is
saturated).

Proposition. The maps of (2.6.1) yield quasi-isomorphisms RUcpys(Z
M) ®@Q 5 Rlys(X) @ Q, Rl (29, MY) @5, KF™ = R (X).

Proof. Our maps are compatible with identifications terys of (1.18.2) and
(2.5.1), so it suffices to check the claim for RIpk. Due to isomorphisms
tar of (1.16.2) and (2.5.1), it is enough to show that the restriction
RF(X’QkX,MX)/R) — RI'(X, QX/R) = RT4r(X) is a quasi-isomorphism,
which follows from Ogus’ theorem in 1.19. O

3. The Fontaine-Jannsen conjecture

3.1. For X € Vary we define the crystalline period map

ys - ) P
(3.1.1) Perys © Rlerys(X) = RIg (X, Zp) ®z, Acrys

B HL (X)©Qis a free B;”rys
trivial torsor.

40We view pairs as log schemes as in [B] 3.2.

-module being a twist of Hyp (X) @ B;”rys by a
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as the composition of the evident map RIcrys(X) — Rlcrys(X )@Zp with
identification (2.4.2). Composing perys ® Q with isomorphism tepys from
(2.5.1), we get

(312) PHK - RFHK( )B+ — RFet(X Qp) ®Qp Bcrys

These are morphisms of Eq, Acrys- and BCr (-algebras equipped with the
Frobenius action ¢ (it acts on the target via the second factor). The Galois
group Gal(K/Kj) acts on Var g and all the functors; perys, prk are compat-
ible with this action. Thus if X is defined over an extension K C K of Ky,
X = Xk ®k K, then Gal(K/K) acts on both terms of (3.1.1), (3.1.2) and
Perys, PHK commute with the Galois action.

3.2.  We use the notation from 1.17. Below Q,/Z,(1) is the subgroup of

p>-roots of 1 in OX, so Qp(1) is projective limit of the system ... TN

Q,/Zy(1) 2 Q,/Z,(1). Thus one has an embedding Q,(1) < Ly, (™)
(6™ modpOg) € L,, hence a canonical embedding Q,(1) — Allys- The
image of Zy(1) lies in (14 Jerys)™; applying log : (14 Jerys) ™ — Jcryb, we get
l:Zp(1) = Jerys C Acrys. As in [F1] 2.3.4, set Bepys == Acrys[l( )~1], where t

is a generator of Z,(1). Inverting {(¢) implies inverting p,*” s0 Berys D Bcrys

Theorem. The Bpys-linear extensions of perys and ppx are quasi-
isomorphisms: for any X € Varg one has perys @ RUerys(X) ®4,,,, Berys 5
Rrét(Xa Qp) ® Bcrys; PHK : RFHK(X)%LW& = RFét(Xa Qp) X Bcrys-

Proof. Tt is very similar to that of the pgr counterpart in [B] 3.6: there is a
calculation for circle (Lemma below), the rest comes by a general functori-
ality argument.

(a) The case of X = G, = PL~{0,00}: Let  be the standard parameter
on G,,, and G,, be P! viewed as a G,,-equivariant compactification of G,,
So (G,,z,G,,g) is an ss-pair over K; denote the corresponding log S- scheme
by Yg. Its log structure is generated by £ and ¢. Let Yerys be Gm Eery. €quipped
with the log structure on G, Eo.y. generated by ¢ and Lepys.

By (ii) of the proposition in 2.5, it suffices to consider the group H'.
Consider the canonical map Rlcys(Ys) — Rleys(G,,5z). Since Yerys is a
pd-smooth object of (Yg, /(Eerys, Lerys))erys, the RI of its de Rham complex
equals Rlrys(Yg) (see (1.8.1), (1.18.1)), so HL (Ys) is a free Acrys-module

crys

generated by dlogt. By (i) of the proposition in 2.5, HL (G, ) ® Q is a

crys

free B(J;ys module generated by the image of dlogt. Let x be the canonical

47For the pd structure on Jerys provides p~ ()P € Jorys.
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generator of HY (G, i, Zy(1)) = HY(Gyug Z,) @7, (1); applying L : Z,(1) =
Acrys, we get I(k) € Hélt(GmK, Zp) @ Acrys. It remains to prove:

Lemma. One has perys(dlogt) = I(k).

Proof of Lemma. We do mod p™ computation. Let G, be a copy of G,, with
parameter £, and 7 : G,;, — G,, be the map 7*(t) = t*". Then G, /G, v is
a Z/p"™(1)-torsor, and k, € HY(G,, e, Z/p™(1)) is its class. The correspond-
ing Cech hypercovering is the twist of G,z by the universal Z/p™(1)-torsor
t over the simplicial classifying space B. of Z/p"(1), and k,, comes from an
evident 1-cocycle on B.. Now 7 extends to an h-covering (G, Gmg) —
(G,,k,G,,5) of ss-pairs; its t-twist 7. : (G g, Gmg). = (G,,z,G,,5) is an
h-hypercovering in Vary. Changing the notation, we have 7 : Y g — Yg and
m. Y5 — Yg. We want to check that 77,.s 1 Rlerys(Yg) ) — Rlerys(Y'5 ) )
sends dlogt to I(ky,). To do this, we extend 1. to a map of simplicial pd-
smooth thickenings P~ — P. over Ecysn.

Set P := Yeysn, G = GE,LE _(:= the pd-envelope of Gy, at 1, see

1.2). Then G acts on P through Q — G- Our P is the twist of P by
the universal G-torsor over the simplicial classﬁymg space Bg..*® Consider
now the ~-copies P~ and G". Together with the G-action, P~ carries an action
of p~"Z, via the composition p~"Z,(1) C Qu(1) — Al = Alysn =
G (FEerysn), where — is the canonical embedding. Its restriction to Z,(1)
lands in (14 Jerysn) ™, i.e., we have a homomorphism « : Zy(1) — g~(Ecrysn).
Both actions combine into an action of the group pd-scheme G which is
an extension of (p™"Zy,/Z,)(1)E.,,., by G~ defined as the pushout of 0 —
Zp(1) = p™"Zp(1) — (p~"Zp/Zp)(1) — 0 by a. Our P7 is the twist of
P~ by the universal G*-torsor over the simplicial classifyling space Bg-..
Extension GT splits over S; since o vanishes at S; C Ecrysn, so we get
an exact embedding of simplicial log E¢rysn-schemes Y 5,. = P.. The pd
structure on G~ provides a pd structure on its ideal. Finally, the projection
m: P"— P and an evident “multiplication by p™” morphism 77 : G+ — G
yield a map wp. : PT — P. of pd-thickenings that extends ;..

The pd-thickenings P; and Pj are pd-smooth over Ecrysp, 50, by (1.8.1),
(1.18.1), the map 7Tcrys : Rleys(Yg)(n)y — Rlerys(Y §)(n) coincides with
the pullback map 7}, : RI'(P,Qp) — RI'(P7,Qp-) between the total de
Rham complexes; here 2, := Qg,/( Furyer Loy Now dlogt € I'(Py, Q1 p,) €x-
tends to a total 1-cocycle in I'(P., Q) by addmg the component logy €
I'(Py, Op,) which comes from the evident G-valued 1-cocycle x on Bg.. One
has mp,(dlogt) = p"dlogt = 0, and 7}, (log x) comes from the 1-cocycle
log(x7*) on Bg., which is I(ky), q.e.d. O

48P is equal to the simplicial object P, of (Ys, /(Eerys, Lerys)n)erys from 1.6.
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(b) Compatibility of perys with the Gysin maps for codimension 1 closed
embeddings of smooth varieties: Let i : Y — X be such an embedding.
For any cohomology theory RI» we deal with, consider the cohomology with
supports RIy (X) := Cone(RIY(X) — RI?(X \Y))[—1]. Recall a definition
of the Gysin isomorphism i, : R[>(Y) = Ry (X)[2]. (Here the Tate twist
(1) in the target is canceled due to specifics of the cohomology theories we
deal with, see below.)

Let £ be the normal line bundle, iy : Y < L its zero section. There
is a canonical identification 1 : RI}y(L£) = RIby(X) defined using the
deformation to normal cone construction. Namely, we have the diagram

L — Xg <« X

(3.2.1) 1 i 4 +i
Y — YAl «— Y.

Here Vi = Y x A, X0 is X x Al with Y x {0} blown up, the bottom
embeddings are y — (y,0), (y,1). The arrows RI%y (L) < RI%y,, (Xg1) —
RI%y(X) are quasi-isomorphisms (this is standard for RIg, RIyr;* the
assertion for RIyk and Rliys ® Q is deduced from that for RIyr using
(2.5.1)). Their composition is 7.

One has i, = nigs, so it suffices to define ig.. The projection £ —
Y makes RIy (L) an RI%(Y)-module, and g« is a morphism of RI%(Y)-
modules. Thus to define 4., we need to specify the orientation class ig.(1) €
H%, (L) <& 7<0(Ryy (£)[2]) (here < holds due to (ii) of the proposition in
2.5). If Y is connected, then H% (L) is a free module of rank 1 (see loc. cit.),
so, localizing Y, we can assume that £ is trivialized. Then H%- (L) <
H}(G,, %), and we define ig.(1) to be dlogt for RTyr, RItk, Rluys ® Q,
and [(k) for Rl (-, Qp) ® Berys (see (a) for the notation). We have defined
i0%, hence i,. It is an isomorphism (standard for RIg;, RIyR; the assertion
for RI'mk and Rlgpys @ Q is deduced from that for RIyr using (2.5.1)). Our
i, commutes with the maps of (2.5.1) and, by lemma in (a), with perys.

(c) The case of smooth projective X: We can assume that X is connected,
dim X = d. Then H?¢(X) is a free module of rank 1 (see (ii) of the proposi-
tion in 2.5), and the Poincaré duality pairing H4(X) x Hf?d*i(X) — H(X)
is nondegenerate (standard for RIg, RIygr; the assertion for RIyk and
RIrys ®Q is deduced from that for RI4g using (2.5.1)). Since perys is a mor-
phism of algebras, it is compatible with the Poincaré duality. This, together
with (ii) of the proposition in 2.5, implies that perys @ Hiys(X) @ Berys —

crys

49Use purity to identify the arrows with R[7(Y) <= RI'2(Ya1) — RT2(Y).
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H gt(X ,Qp) @ Berys is an isomorphism for every i if this is true for i = 2d.

To check the latter assertion, consider the class ¢; € H3(X) of hyperplane
section (defined using the corresponding Gysin map). Then cgt is a base in
HZHX,Qp) @ Berys, ¢y is a base in H2 (X) ® Q (by (2.5.1), since cdy, is
a base in H3%(X)). Now perys(Cerys) = ca by (b), and we are done.

(d) The case when X is the complement to a strict normal crossings
divisor in a smooth projective variety: Checked exactly as in [B] 3.6, by
induction by the number of the components of the divisor using (c) and (b).

(e) The case of arbitrary X: Checked exactly as in [B] 3.6, using an

h-hypercovering of X by varieties as in (d). O

3.3. The theorem in 3.2 implies the Fontaine-Jannsen conjecture. To see
this, we pull ppk back to the Fontaine-Hyodo-Kato G4-torsor®” Spec By over
Spec Berys to trivialize the twist, cf. (1.18.4). We get a canonical quasi-
isomorphism of Bgi-complexes

(3.3.1) pik : Rk (X) ®@garBgy = Rl (X, Qp) ® B

compatible with the (p, N)-action and with the Gal(K /K)-action on Varg.
This is the identification asked for in [F2] §6.

Conjectures Cpgt, Cyt, and Cerys (see [F2] 6.2.1, 6.2.7, 6.1.4) come as
follows:
(i) Suppose X is defined over a finite extension K of Ky, K C K, so we have
X over K and an identification X = Xy @y K. We get the Gal(K /K)-
action on RI'mk(X). By [F1] 4.2.4, H{(X) coincides with the subspace of
those elements in H{} (X) @ gaBgy whose stabilizers in Gal(K /K) are open,
hence, via (3.3.1), with the similar subspace of H}(X,Qp,) ® Bg. This is
conjecture Cigt.
(ii) Assume we are in the situation of 2.6. Then RIyk(ZY, MY) @k, K& =
RI'yk(X) by the proposition in loc. cit., so Gal(K/K) acts trivially on
RTy (77, MY). We get pric = RTuk (27, M) @, Bst = Rl (X, Qp) ©q, Bt
which is conjecture Cg;.
(iii) Assume we are in the situation of 2.6, and (Z9, MY)/(SY, L) can be re-
alized as the pullback of a log scheme (Z9, MY) over SY = Spec k (with trivial
log structure) by the tautological map (S, £9) — S¥. E.g. this happens if X
is smooth proper and Xy has smooth model Z: then the log structure M
is trivial. By the base change, Rlcrys(Z2), M) ® Q = RImk(Z{, M?), so N
acts trivially on the Hyodo-Kato cohomology, and ppg from the theorem in
3.2 can be rewritten as RFCTYS(Z?, MY) ®w (k) Berys = R (X, Qp) @ Berys,
which is conjecture Cerys.

50R€C&H that Bst = B:_t ®B$ys Bcrys-
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3.4. In the rest of the section we show that the crystalline period map is
compatible with its derived de Rham cousin pggr from [B]:

Theorem-construction. For any X € Varg there is a canonical isomor-
phism

(3.4.1) RT4r(X) ® Bln = Rleys(X) ®a,,, Bip,

compatible with the Galois action such that pgr from [B] 3.5.4 is the compo-
sition of (3.4.1) with perys® Bl + RUerys(X)®a,,, Bin = RTa(X, Q) Q@ Blp.
Proof. Let us fix notation. As in [B] 3.3, for any ss-pair (V,V)
over K we denote by RI‘ER(V, V) its absolute derived de Rham complex
RU(V, L7y wa)- Set RUR(V, V), = RIR(V,V) @F Z/p" 5
RI(V, LOw,yp, /Wn(k)): where = is the base change identification, RI‘gR(V,
V)&Z, := holim, RU, (V, V), RUL(V,V)@Q, = (RTI(V,V)&Z,) © Q.
These are F-filtered Eo, algebras, where “F-filtered” means that we view
them as mere projective systems of quotients modulo the terms of Hodge

filtration F. Below we consider the homotopy F-completions of these com-
plexes, which we denote by limgp. So we have limFRF(ER(V, V) =
holim,, (RLAg (V, V), /F™), limp RT (V, V)&7Z,, := holim,, (RT3, (V, V)&Z,/
F™) = holimy, ,(RT, (V, V), /F™), etc.

Recall that Agg = RFER(SpeC (K,0f)) (see the lemma in [B] 3.2). The
corresponding F'-filtered algebras Agrn, Adr®Zp, Agr®Q, are acyclic in
degrees # 0 and their projections -/F™*! — ./F™ are surjective (see [B]
1.4, 1.5). Thus Aan = limpAqry equals lim H(Aqrn/F™), AgR =
limp(Aqr®7Z,) equals lim HO(AgR®Z,/F™) 2L and limp(AgRr®Q,) =
lim HO(Aqr®Q,/F™) = B/.5% One has A<<1>Rn = A(?R@Z/p” = A(?R@LZ/p".

For any (V, V), the complex RI‘ER(V, V) is an F-filtered Eo, filtered Agg-
algebra, so limFRI‘(ER(V, V), is an A(?Rn—algebra, limF(RI‘gR(V, V)®Q,) is
a BIR—algebra, etc. In 3.5-3.7 below, we will construct the next natural
quasi-isomorphisms:

(a) In 3.5, we define an F-filtered quasi-isomorphism ~ : RIyr(V) ®x
(Aqr®Q,) = RI%L(V,V)&Q,. The filtration F on RIyr(V) is the Hodge-
Deligne filtration (see [B] 3.4); it is finite and grp RTqr(V) is a perfect K-
complex. Thus we have

(3.4.2) limpy : RUr(V) ® 5 Bl = limp (R (V, V)@Q,).

51By Example in 3.6 below, A, is the J™-topology completion of Ay
5280 A(?R ® Q is dense in B(TR, but not equal to it.
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(b) In 3.6, using the Illusie-Olsson comparison (see 1.9), we construct
a natural compatible system of ring homomorphisms Acryspn — A(?R , and

quasi-isomorphisms £, : Rlcrys(V, V)(n) ®ﬁms . A<<1>R " 5 limpRT ER(V, Vn.
The proposition in 2.2 yields Rlcrys(V, V) ®£ﬂys A(<1>R 5 holim,, RTerys(V,

V)(n) ®k A(?Rn, so we get

crysn

(3.4.3) 1= holimpsy, : Rluys(V, V) @k ASy = limp(RT5R (V. V)BZy).

(c) Consider the evident Agr®Z,-linear map RF(ER(V, V®RZ, —
RFQR(V, V)@Qp. In 3.7 we prove that the B(J{R—linear extension of its limp
is a quasi-isomorphism:

(3.4.4)  (imp(RU(V,V)EZ,)) @k Bl 5 limp(RU (V. V)BQ,).

Assuming (a)—(c), let us deduce the theorem. Consider RIyr(V) ®g
Bl = Rluys(V.V) ®ﬁcry5 B, defined as the composition ((3.4.3)®Bjz) !
(3.4.4)7%(3.4.2). This is a quasi-isomorphism of presheaves on VarE. Its h-
sheafification is a quasi-isomorphism of h-sheaves Aqgr® 5 Bji'R 5 Acrys ®/LXCWS
B(J{R on Vary (we use the notation of [B] 3.4); applying RI'(Xy,-), we get
(3.4.1). The construction is natural, so it commutes with the Galois action.
The final property is evident from the constructions of perys and pgr. We
are done. 0

3.5.  We consider (a) above. Recall that we have a filtered quasi-isomorphism
RTEL(V, V)®Q 5 RT4r(V), so the evident map RUA (V, V) = RLL (V, V)&

Z,, yields the morphism of F-filtered K-algebras RTag (V) — RT (V, V)2Q,.
Let v : RTur(V) @z (Aqr®Qp) — RTIL (V, V)EQ, be its Aqr©Q,-linear ex-

tension.

Lemma. v is a filtered quasi-isomorphism.

Proof. By [B] (4.2.1), gr%RI‘gR(V, V) carry a finite filtration I. and we have
an identification grégr}lRFgR(V, V) = RI(V,Q%,..)[—d] ®ék grn “Agr.

o V) : . )
Here Q) Wy T Q V.7)/(5.C) 2re relative differential forms with log singulari-

ties. The I,’s are grpAgr-submodules of gr'FRF(IiR(V, V) and the identifica-
tion is grypAqgr-linear.

Since RI'(V, QL(LVV>) is a perfect O -complex, applying -@Qp yields a fi-

nite filtration 1. on gr?RFﬁR(V, V)®Q, together with a grpBlg-linear iden-

tification grigry RU (V,V)®Q, = @ RI(V, 02 oy)[=al @0 g Bl
m>a>0 )
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One also has an evident gryBJ;-linear identification grp (RLar(V) @
(Aqr®Qp)) = @a gr%(RFdR(V))(X)Kgr?*aBjR = @®_ RI(V, Q?yj))[_a]@Ok

m>a>0
gr'n “Bly.

Since gryy sends gr&.RIyr (V) to Iagrcf‘,RI‘gR(V, V)®Q, = gr‘};RTﬁR(V,
V)®Qp, it sends griRI4r(V) ® grpBiy to Iagr';f“RFgR(V, V)®Q,. The
lemma follows if we check that gr{.RI4r (V) ® grpBiz — grflgr'l;“aRFgR(V,
V)@Qp is a quasi-isomorphism. By the above, it suffices to do this for - = 0.
Here it is evident: the projection RFER(V, V) — RF(V,Q'WJ—G) provides,
after applying gr% - @Qp, the inverse map. O

3.6. Let us consider (b) in 3.4. The log schemes (V, V), /W, satisfy the
condition of Remark (i) in 1.9, so we get canonical morphisms

(3.6.1) kn : Rlerys(V, V) ny — limpRL (V, V).

Here &y, is projective limit of Ky @ Rlerys(V, V)(n) — RFER(V, V)n/F™,
where K, is the composition Rlerys(V, V) ) = RE((V, V)n/Wh)erys, O) —
RT(((V, V) /W), 0/ JM) = RFCER(V, V)n/F™, the first = comes from
Remark (i) in 1.12, the second = is the inverse to the Illusie-Olsson isomor-
phism (1.9.2).

Ezample. For (V,V) = Spec (K,O), our fy is a canonical map Acysn —
A(?R ,,- By Illusie-Olsson (see 1.9), it identifies Acrysy/ Jy[Lm] with Agr,/F™,
where J, is the kernel of the projection Acrys, — O z/p". Thus A(?R is the
completion of Acys with respect to the J [m_topology.

Proposition. The Aan-linear extension of Kk, is an isomorphism: one has
(3.6.2) RTepys(V, V) () @5 ASp, 5 impREgR(V, V),

Proof. By Proposition in 2.2, the Lh.s. in (3.6.2) equals holim,, RI¢wys(V,
V)(n) ®£”ysn (Acrys n/JT[lm]) 5 hOhmmRF(((V7 V)n/(gna_Acrysn/Jr[Lm]))crysa
OVn/(AgySﬁ/Ji;"‘])) by base change and (1.18.1). Since (V, V), is log smooth
over (S,L),, the Hodge-pd filtration on Q KBy T is finite (in fact,
FNQ"_/ S (Aueson /I vanishes for N > dimV + m), so the above comple-
tion equals the completion for the Hodge-pd filtration, which is the r.h.s. of
(3.6.2) by the Illusie-Olsson theorem in 1.9. O
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3.7. Consider finally (c) in 3.4. Using (3.4.2) and (3.4.3), the map (3.4.4)
can be rewritten as ¢ : Rlcyys(V, V) ®A Biz = RIar(V) ®% Blz. Both

terms are perfect B dR—complexes (see Prop081t10n in 2.2) and BQ‘R is a dvr,
so to prove that ¢ is a quasi-isomorphism it suffices to check that its pullback
oc, : Rlrys(V, V) ®A Cp = RI4r(V) @k Cp to BdR/de = C, is a quasi-
isomorphism. We use 2.2 and the notation in loc. cit. By (1.18. 1) and base
change, one has RTerys(V, V) ®% OK = RU(Z,Qz.0m) /5, 5))®OKOK, hence

Rlpys(V,V)® Acrys(C = RT, dR(V) @z Cp. Comparing it with the definition of
k in (3.4.2), we see that this identification equals ¢¢,, and we are done. [J

Index of notation

(Z, M), (Z, M), M&, Al 115 S5, GE 1.2 Tge, Cs: 133 Ogys, Tys,
1;}557 fcrySa ((ZvM)/Sﬁ)Cry& (Z/S)IC(;%IS ]-55 (U7 T*)7 C‘F 167 Q.(U/_'[‘)/S) Q.Z/Sa
F™, Y z.py 175 L g sy 195 Fro, Frip, € 1.10; DPF 1115 i, F,
<Z7M)Cl"y57 (Z7M)Crys(n)7 RFCI"yS<Z7M)(n)7 RFCI“yS(ZvM)7 Hérys(Z7M)7
(Z, M), 1.12; Ry-mod, Hom}, , Dy(R), R} -mod, DY"(R)™ 1.13; DE™(2/S)
D(I;CT(Z/S)nd7 DLP((Z/S)CrySa OZ/S) 1.14; Ko, ey, DPCY( )nd HOth o,N? (Qov N)_
mod, ((,0, N)eﬁ—mod7 D%N(Ko), D@ N(Kvo)eff 1. 15 RFHK(ZI,M ) AQ, LdR,
RI’HK(Z?,MO)QQ 1.16; Acrys, Jerys, Ferys, Loryss Lo 1.17; Ry (Z71, M7),
Bg}ys? Lcry57 Bst7 Knl" 118 ®Zp7 ®Qp 21, VCLT‘?—?, RFCryS(‘/a V), chrys(v, V)(n)
zzAm523RnW4 ), H2 o (X) 2.4; Amc, RTw(X), Hige(X), RTar(X),
RFHI((X)ECtyS’ Rk (X) % 2.55 perys, pux 3.1; RF(ER(V» V), limp, Adr, A(?R
3.4.
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